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Chou (1945) proposed modeling the exact equation for €. In terms of this
formulation, the kinematic eddy viscosity and turbulence length scale are

vr ~ ke, £~k /e (4.32)

Rotta (1951) first suggested a transport equation for the turbulence length
scale and later (1968) proposed an equation for the product of k and £. In either

case,
ve~ kY2, e~ K320 (4.33)

More recently, Zeierman and Wolfshtein (1986) introduced a transport equa-
tion for the product of & and a turbulence dissipation time, 7, which is es-
sentially the reciprocal of Kolmogorov’s w. Also, Speziale, Abid and Anderson
(1990) have postulated an equation for 7. For these models,

vp~kr, A~ kY3 e~ k/r (4.34)

Regardless of the choice of the second variable in our two-equation model,
we see a recurring theme. Specifically, the dissipation, eddy viscosity and length
scale are all related on the basis of dimensional arguments. Historically, dimen-
sional analysis has been one of the most powerful tools available for deducing
and correlating properties of turbulent flows. However, we should always be
aware that while dimensional analysis is extremely useful, it unveils nothing
about the physics underlying its implied scaling relationships. The physics is in
the choice of variables.

One of the key conclusions of the 1980-81 AFOSR-HTTM-Stanford Confer-
ence on Complex Turbulent Flows was that the greatest amount of uncertainty
about two-equation models lies in the second transport equation complementing
the equation for k. Further, it was even unclear about what the most appropriate
choice of the second dependent variable is. In the quarter century following the
Conference, interesting developments have occurred, most notably with the k-w
model, that help clear up most of the uncertainty.

Betore proceeding to details of two-equation models, it is worthwhile to pause
and note the following. As with one-equation models, there is no fundamental
reason that vr should depend only upon turbulence parameters such as k, ¢,
€ or w. In general, the ratio of individual Reynolds stresses to mean strain
rate components depends upon both mean-flow and turbulence scales. Thus,
two-equation turbulence models are no more likely than one-equation models to
apply universally to turbulent flows, and can be expected to be inaccurate for
many non-equilibrium turbulent flows.

Additionally, some researchers even argue that the addition of another dif-
ferential equation invites unexpected numerical difficulties and miscellancous
unintended mathematical anomalies. We will indeed see some of this behavior
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as we investigate two-equation turbulence models, and what has been done to
deal with the additional complexities attending their implementation.

4.3.1 The k-w Model

As noted above, Kolmogorov (1942) proposed the first two-equation model of
turbulence. Kolmogorov chose the kinetic energy of the turbulence as one of his
turbulence parameters and, like Prandtl (1945), modeled the differential equation
governing its behavior. His second parameter was the dissipation per unit tur-
bulence kinetic energy, w. In his k-w model, w satisfies a differential equation
similar to the equation for k. With no prior knowledge of Kolmogorov’s work,
Saffman (1970) formulated a k-w model that would prove superior to the Kol-
mogorov model. As part of the Imperial College efforts on two-equation models,
Spalding [see Launder and Spalding (1972)] offered an improved version of the
Kolmogorov model that removed some of its flaws.

Shortly after formulation of Saffman’s model and continuing to the present
time, Wilcox et al. [Wilcox and Alber (1972), Saffman and Wilcox (1974),
Wilcox and Traci (1976), Wilcox and Rubesin (1980), Wilcox (1988a) and
Wilcox (1998)] have pursued further development and application of k-w turbu-
lence models. Coakley (1983) has developed a k'/?-w model. Speziale, Abid
and Anderson (1990), Menter (1992c), Peng, Davidson and Holmberg (1997),
Kok (2000) and Hellsten (2005) have also devised k-w models. Robinson, Harris
and Hassan (1995) have developed a k- model, where ( ~ w? is enstrophy,
i.e., the RMS fluctuating vorticity.

In formulating his model, Kolmogorov referred to w as “the rate of dissipa-
tion of energy in unit volume and time.” To underscore its physical relation to
the “ “external scale’ of turbulence, £,” he also called it “some mean ‘frequency’
determined by w = ck'/?/¢, where c is a constant.” On the one hand, the re-
ciprocal of w is the time scale on which dissipation of turbulence energy occurs.
While the actual process of dissipation takes place in the smallest eddies, the
rate of dissipation is the transfer rate of turbulence kinetic energy to the smallest
eddies. Hence, it is set by the properties of the large eddies, and thus scales
with & and ¢, wherefore w is indirectly associated with dissipative processes. On
the other hand, in analogy to molecular viscosity, we expect the eddy viscos-
ity to be proportional to the product of length and velocity scales characteristic
of turbulent fluctuations, which is consistent with Kolmogorov’s argument that
w ~ k2 /4. Of course, we should keep in mind that analogies between molec-
ular and turbulent processes are not trustworthy, and Kolmogorov’s argument is
essentially an exercise in dimensional analysis, not fundamental physics.

The development of the Kolmogorov model (1942) is quite brief and doesn’t
even establish values for all of the closure coefficients. Since little formal de-
velopment of the equations is given, we can only speculate about how this great
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turbulence researcher may have arrived at his model equations. Since he makes
no specific reference to any exact equations, it seems unlikely that he attempted
to close the & equation or other moments of the Navier-Stokes equation term by
term. Rather, as the great believer in the power of dimensional analysis that he
was, it is easy to imagine that Kolmogorov’s original reasoning may have gone
something like this.

e Since k already appears in the postulated constitutive relation [Equa-
tion (4.8)], it is plausible that v, o k.

e The dimensions of v, are (length)?/(time) while the dimensions of & are
(Iength)?/(time)>.

o Consequently v /k has dimensions (time).
e Turbulence dissipation ¢ has dimensions (length)?/(time)3.
» Consequently ¢/k has dimensions 1/(time).

s We can close Equations (4.8) and (4.11) by introducing a variable with
dimensions (time) or 1/(time).

The next step is to postulate an equation for w. In doing so, the avenue that
Kolmogorov took was to recognize that there is a fairly small number of phys-
ical processes commonly observed in the motion of a fluid. The most common
processes are unsteadiness, convection (often referred to as advection), diffu-
sion, dissipation, dispersion and production. Combining physical reasoning with
dimensional analysis, Kolmogorov postulated the following equation for w.

Ow Ow 0 Ow
5 + Uj%j = B 5:4:: [m/T a;] (4.35)

We have taken some notational liberties in writing Equation (4.35), and 3 and
o are two new closure coefficients. This equation has four particularly notewor-
thy features. First, there is no analog to the k-equation’s turbulence production
term. The absence of a production term is consistent with Kolmogorov’s notion
that w is associated with the smallest scales of the turbulence, and thus has no
direct interaction with the mean motion. His logic is flawed on this issue as
the large-scale, energy-bearing eddies are primarily responsible for determining
the appropriate time scale of the turbulence, and the rate of dissipation itself.
Second, the equation is written in terms of w rather than w?. As will be shown
when we analyze the defect layer in Subsection 4.6.2, Kolmogorov’s decision
to write his equation in terms of w was a somewhat prophetic choice. Third,
there is no molecular diffusion term so that this equation applies strictly to high-
Reynolds-number flows and cannot be integrated through the viscous sublayer
as it stands. Fourth, it is entirely empirical, guided by physical reasoning.
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The interpretation of w has behaved a bit like the turbulent fluctuations it is
intended to describe. Saffman (1970) described w as “a frequency characteristic
of the turbulence decay process under its self-interaction.” He stated further,
“The rough idea is that w? is the mean square vorticity of the ‘energy containing
eddies’ and [k] is the kinetic energy of the motion induced by this vorticity.”
Spalding [Launder and Spalding (1972)], Wilcox and Alber (1972) and Robmson,
Harris and Hassan (1995) identify w as the RMS fluctuating vorticity, so that w
is twice the enstrophy. Wilcox and Rubesin (1980), Wilcox (1988a, 1998) and
Speziale et al. (1990) regard w simply as the ratio of € to k.

The w equation has changed as the k-w model has evolved over the past six
decades. A production term has been added by all model developers subsequent
to Kolmogorov. Like Kolmogorov, Wilcox (1988a, 1998), Speziale et al. (1990),
Peng et al. (1997), Kok (2000) and Hellsten (2005) write the equation for w
in terms of w, while most other models use an equation for w?. The following
version of the k-w model dramatically improves predictive accuracy of the Wilcox
(1988a) model for free shear flows and strongly separated flows.?

Kinematic Eddy Viscosity:

o= Gmmax{w, Chmy Y Cim=1  (436)
w g* 8
Turbulence Kinetic Energy:
dk ok oU; 0 k\ Ok
— + Uj— A - Bk — ) — 4.37
8t+ I 8z, T'?@ b w+8$j [(V+J w) 6:1:,-] (4.37)
Specific Dissipation Rate:
o O w O ca Ok Do 9 [(,, k) ow
ot = 1oz, Erry w Bz; Bx; O w /) Or;
(4.38)
Closure Coefficients and Auxiliary Relations:
13 y 9 1 . 3 1
a—%, B = Bofs }6—"1_00’ U-—§1 U—g; ffa:o—*S— (4.39)
g L
Ox; 0z (4.40)
Td = ;
) g P20
o 827j 6:]33'

2These equations can be used for general compressible flows by replacing v, vr, k/w and k/o
by p = pv, pr = pvr, pk/w and pk/@, respectively, and multiplying all but the diffusion terms
by p. Also, a mean-energy and equation of state must be added — see Subsection 5.4.7 for complete
details.
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e=p'wk and {=kY%/w (4.42)

To avoid confusion, from this point on, we will refer to Equations (4.36) — (4.42)
as the Wilcox (2006) k-w model.

The tensors €2;; and S;; appearing in Equation (4.41) are the mean-rotation
and mean-strain-rate tensors, respectively defined by

__l1fau; oy, 178U | oU;
= 2 (6333- 3:1:@) L 2 (azj i 55{) (&

As can be easily verified, the quantity x. is zero for two-dimensional flows.
The dependence of 8 on x., patterned after the work of Pope (1978), has a
significant effect for round and radial jets.

The most important differences between this version of the k-w model and
carlier versions created by Wilcox et al. are addition of a “cross-diffusion”
term and a built-in “stress-limiter” modification that makes the eddy viscos-
ity a function of k, w and, effectively, the ratio of turbulence-energy production
to turbulence-energy dissipation.

The term in Equation (4.38) proportional to ¢4 is known as cross diffusion.
The addition of cross diffusion to the w equation was first suggested by Speziale
(1990) as a remedy for the original k-w model’s sensitivity to the freestream
value of w. While Speziale and others, e.g., Menter (1992¢), Wilcox (1993), Kok
(2000) and Hellsten (2005) have succeeded in using cross diffusion to eliminate
boundary-condition sensitivity, usually it has come at the expense of the ability
to make reasonable predictions for free shear flows. Strictly speaking, models
created in this spirit will be limited in applicability to wall-bounded flows. _

The stress-limiter modification, i.e., the dependence of v, upon « rather
than strictly w, was first introduced by Coakley (1983) and later implemented
by Menter (1992¢) and Durbin (1996). Huang (1999) shows that limiting the
magnitude of the eddy viscosity when turbulence-energy production exceeds its
dissipation yields larger separation bubbles and greatly improves incompressible-
and transonic-flow predictions. Kandula and Wilcox (1995), for example, have
verified for a transonic airfoil that it improves predictive accuracy of the k-w
model without cross diffusion and blending functions® and/or nonlinear con-
stitutive relations such as those implemented by Menter (1992¢) and Hellsten
(2005). In point of fact, the success that has been achieved with the k-w model
stated in Equations (4.36) — (4.42) demonstrates that blending functions add little
advantage and counter the elegance and simplicity of the k-w model.

3Blending functions are designed to make closure coefficients o, 3, 8%, o, o* and o4 assume
one set of values near a solid boundary and another set near the edge of a shear layer.
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The improvements to the k-w model represent a significant expansion of its
range of applicability. As we will see in the applications addressed in this Chapter
and in Chapter 5, the new model retains the strengths of previous versions of the
k-w model. The model’s improvement over earlier versions lies in its accuracy
for free shear flows and for even more complicated separated flows. When we
proceed to applications, we will see the following features of the k-w model
defined in Equations (4.36) — (4.42).

e The model is as accurate as the Wilcox (1988a) model for attached bound-
ary layers, mildly separated flows and backward-facing steps. This is
important because the Wilcox (1988a) model predicts properties for such
flows that are in very close agreement with measurements. The new model
is nearly identical for all attached boundary-layer computations, mildly sep-
arated flows and backward-facing steps attempted to date.

e The model’s predicted free shear flow spreading rates are much closer
to measurements, so that it is applicable to both wall-bounded and free
shear flows. Since most complex turbulent flows include both types of
regions, this is a minimum requirement for any turbulence model that is
proposed for use in complex flows. With the exception of the enstrophy-
equation model developed by Rebinson, Harris and Hassan (1995) — using
11 closure coefficients and 2 closure functions — no other two-equation
model known to this author satisfies this requirement.

¢ The model provides greatly improved predictions for shock-separated flows
without introducing any compressibility modifications to the model. Chap-
ter 5 includes comparisons of measurements with model predictions for
Mach numbers from transonic to hypersonic speeds that reflect the model’s
extended range of applicability. Earlier versions of the k-w model required
compressibility modifications to achieve reasonable results.

4.3.2 The k-¢ Model

By far, the most popular two-equation model until the last decade of the twentieth
century was the k-e model. The earliest development efforts based on this model
were those of Chou (1945), Davidov (1961) and Harlow and Nakayama (1968).
Widespread use of the model began with the version introduced by Jones and
Launder (1972). Launder and Sharma (1974) subsequently “retuned” the model’s
closure coefficients and created what is generally referred to as the Standard
k-¢ model.

Again, we begin with Equations (4.8) and (4.11). In formulating the k-¢
model, the idea is to derive the exact equation for ¢ and to find suitable closure
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approximations for the exact equation governing its behavior. Recall that € is
defined by Equation (4.5). The exact equation for ¢ is derived by taking the
following moment of the Navier-Stokes equation:
Ou, 9O

— [M(u;)] =0 4.44
D) (4.44)
where N (u;) is the Navier-Stokes operator defined in Equation (2.26). After a
considerable amount of algebra, the following exact equation for € results.

2v

Oe Oe oU; e s (MR
——+U-——~=—2v[u’. wh o, 4+ ul ! } — — il —
Bt 4 6:12;,: LA kyi k. B.I‘j kg axkairj
—2v u;,kug,mu;c,m - 2y2u;,kmu£,km
0 Je — v
+_3xj [v——axj — vujui’mu;,m — QEpfmug’mJ (4.45)

This equation is far more complicated than the turbulence kinetic energy
equation and involves several new unknown double and triple correlations of
fluctuating velocity, pressure and velocity gradients. These correlations are essen-
tially impossible to measure with any degree of accuracy so that there is presently
little hope of finding reliable guidance from experimentalists regarding suitable
closure approximations. DNS studies [e.g. Mansour, Kim and Moin (1988)] pro-
vide some insight into the exact e transport equation for low-Reynolds-number
flows. However, the database for establishing closure approximations similar to
those used for the k equation remains very sparse.

Many researchers have proceeded undaunted by the lack of a rational basis for
establishing closure approximations with a feeling that using Equation (4.45) as
their foundation adds rigor to their approach. The strongest claim that can actu-
ally be made is that conventional closure approximations used for Equation (4.45)
are dimensionally correct. This is not very different from the Kolmogorov (1942)
and Saffman (1970) approaches that are guided almost exclusively by physical
reasoning and dimensional analysis. An important point we should keep in mind
is to aveid modeling the differential equations rather than the physics of
turbulence. That is not to say we should avoid any reference to the differen-
tial equations, for then we might formulate a model that violates a fundamental
physical feature of the Navier-Stokes equation. Rather, we should avoid deluding
ourselves by thinking that the drastic surgery approach to something as complex
as Equation (4.45) is any more rigorous than dimensional analysis.

Even if we had demonstrably accurate closure approximations for the exact
€ transport equation, there is a serious question of their relevance to our ba-
sic closure problem. That is, the length or time scale required is that of the
energy-containing, Reynolds-stress-bearing eddies rather than the dissipating ed-
dies represented by the exact ¢ equation. So, we must ask whether the modeled
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equation for e represents the dissipation as such [as Equation (4.45) does], or
whether it is actually an empirical equation for the rate of energy transfer from
the large eddies (equal, of course, to the rate of dissipation in the small eddies).
The answer seems clear since the closure approximations normally used param-
eterize the various terms in the modeled ¢ equation as functions of large-eddy
scales (our use of dimensional analysis does this implicitly). Consequently, the
relation between the modeled equation for € and the exact equation is so tenuous
as not to need serious consideration. The Standard k-¢ model is as follows.

Kinematic Eddy Viscosity:

vy = C k?*/e ' (4.46)
Turbulence Kinetic Energy:
Ok ok oU; 0 ok
§+ jgg—TzJé}?—ﬁ'f'E |:(V+VT/Jk)%;j| (4.47)
Dissipation Rate:
Oe Oe e OU; 2 0 Je
— o = —Tii—— — Ceg— + —— €) =—— 4
ot +U33$j CdkT“?Ba:j Cez k + ox; [(V—I_UT/O- )anj:l (:45)

Closure Coefficients and Auxiliary Relations:
Ca=144, C2=192, C,=009, or=10, oc.=13 (449

w=¢€/(Cuk) and £=C k%?/e (4.50)

As noted above, the Launder-Sharma (1974) model is known as the Standard
k-e model. In addition to the equations quoted here, it involves viscous damping
functions, which are discussed in Section 4.9.

A more recent version of the k-¢ model has been developed by Yakhot and
Orszag (1986) [see also Yakhot et al. (1992)]. Using techniques from renormal-
ization group theory, they have developed what is known as the RNG k-¢ model.
The eddy viscosity, k£ and ¢ are still given by Equations (4.46), (4.47) and (4.48).
However, the model uses a modified coefficient, C'2, defined by

= C A3 (1= A/A) _k
Coo=Ceo+ T+ AN , A= 'E\/2Sij8j£ (4.51)
The closure coefficients for the RNG k-e model are*

Co =142, Cep=1.68, C,=0.085 o,=072 o,=072 (452
8 =0012, X\, =4.38 (4.53)

4This version of the RNG k-e¢ model has been gleaned from the open literature. A proprietary
improved version exists, but is available only in commercial computer programs for general turbulent-
flow applications.
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4.3.3 Other Two-Equation Models

Two-equation models based on the turbulence length scale, ¢, and the turbulence
time scale, 7, have received less attention than k-w and k-e¢ models. Generally
speaking, the level of agreement between measurements and predictions made
with other models is comparable to k-w and k-¢ predictions for simple constant-
pressure flows, but these models have not been pursued to any great extent. This
subsection presents a brief overview of length-scale and time-scale models. More
details can be found in the various papers referenced in the discussion.

The proposed foundation for Rotta’s (1968) k-k¢ model is the two-point
velocity correlation tensor defined in Equation (2.49), viz.,

Rij(x,t;r) = ul(x, t) ui(x +r,t) (4.54)

As discussed in Subsection 2.5.2, the turbulence kinetic energy is simply one
half the trace of R;; with a displacement r = 0. Rotta’s second variable is the
product of k£ and the integral length scale, ¢, which is the integral of R;; over
all displacements, r = |r|. Thus Rotta’s variables are given by

k= —;—Rﬁ(x,t; 0) and ké = —1%/ Rii(x,t;7) dr (4.55)

As with attempts to model the exact dissipation equation, no particular ad-
vantage has been gained by introducing the two-point velocity correlation tensor.
While an exact equation for k¢ can indeed be derived, Rotta (1968) still had to
perform drastic surgery on the exact equation. Using standard closure approx-
imations based largely on the strength of dimensional analysis, the following
modeled version of the exact k¢ equation results.

5, oU;

9 i f e Sins e 3/2
5{(‘6—6) -+ Uj 8:{;3 (kf) = CngTzJ 8‘.’[,‘3 CLE'k
d o) Ok ¢ i
+5:IZ—J- Ii!lgi‘:(kf) -+ (UT/JM)&’% -+ (I/T/O'LQ)ka—m;J (436)

For this model, k and v, are given by Equations (4.13) and (4.14). Rodi
and Spalding (1970) and Ng and Spalding (1972) developed this model further.
More recently, Smith (1990) has pursued development of a k-k¢ model. Smith
(1994) and Benay and Servel (2001) have developed k- models for which the
dependent variable is ¢ rather than k£¢. Ng and Spalding found that for wall-
bounded flows, the closure coefficient C,, must vary with distance from the
surface. They propose the following set of closure coefficients.

Cry =098, Cp, =0.059+702(4/y)°, Cp,=0.09, or=o0p1 =o0p5=1
(4.57)



132 CHAPTER 4. ONE-EQUATION AND TWO-EQUATION MODELS

On a similar tack, Zeierman and Wolfshtein (1986) base their model upon
the autocorrelation tensor defined in Equation (2.43), i.e.,

Rij(x, t;¢) = ui(x, thuj(x, t + ) (4.58)

The turbulence kinetic energy is half the trace of R;; with ¢’ = 0, while the
integral time scale is proportional to the integral of R;; over all possible values
of ¢'. Thus,

2

The Zeierman-Wolfshtein k-k7 model is as follows.

1 1 e
k= =zRii(x, t;0) and 6 = 5 / Ra(x, t;t') di’ (4.59)
0

Kinematic Eddy Viscosity:

vy = Cukt (4.60)
Turbulence Kiunetic Energy:
Ok Ok ou;, k& 10, ok
— +Uie—=Tj— — = 4 — —_— 4.61
83 i I 6173' Tij 6323' T L 8:Ej [(V il yT/Jk) 8'133:| ( g )
Integral Time Scale:
o aU;
(k’i")—i‘Uja (k‘?‘) TlTTijg:;j —CTgk
a 0
— — 4.62
to [+ vfon) (o) (462

Closure Coefficients and Auxiliary Relations:

Cri =0.173, Cr2=0225, C, =009 op=146 o, =10.8 (4.63)

w=1/(C,7), e=k/r and £=C.k'?r (4.64)

Note that because the eddy viscosity is proportional to k7, Equation (4.62) can
also be regarded as an equation for v...

Speziale, Abid and Anderson (1990) have taken a different approach in de-
vising a k-7 model. Specifically, they introduce the formal change of dependent
variables € = k/7 and transform the Standard k-e model. The resulting equation
for 7 1s as follows.

or or oU;

‘5{ &3 Uggr;:;“ ( - el) Tua (CE2 o 1)
o or
+~(‘E {(1}+UT/JT2)8{L‘J'
2 ok Ot 2 or Or
‘I‘E(V‘*‘V?'/O’TI)E}ESE - T( +VT/O-T2)6 Tk a&ﬁ‘k (4.65)
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Speziale, Abid and Anderson use the following revised set of closure coefficient
values for their k- model that make it a bit different from the Standard k-
model.

Ce1 = 1.44, Cez = 1.83, Op, =0.09, o= Or1 =072 =136 (4.66)

In summary, the models listed above are representative of the various two-
equation models that have been devised since Kolmogorov’s (1942) k-w model.
While other models have been created, the intent of thig text is to study models
in a generic sense, as opposed to creating an encyclopedia of turbulence mod-
els. In the following sections we investigate several aspects of two-equation
models including: (a) specifying closure-coefficient values; (b) surface boundary
conditions for wall-bounded flows; and, (c) applications to a variety of flows,

4.4 Closure Ceefficients

All of the two-equation models have closure coefficients that have been intro-
duced in replacing unknown double and triple correlations with algebraic expres-
sions involving known turbulence and mean-flow properties. The k-w model, for
example, has six, viz., «, B3,, 8%, o, 0* and o4,. If our theory were exact, we
could set the values of these coefficients from first principles much as we use the
kinetic theory of gases to determine the viscosity coefficient in Stokes’ approxi-
mation for laminar flows. However, the theory is not exact, but rather a model
developed mainly on the strength of dimensional analysis. Consequently, the best
we can do is to set the values of the closure coefficients to assure agreement with
observed properties of turbulence.

This section describes the manner in which the closure coefficients have been
determined for the k-w model. There is no loss of generality in doing this since
these same general arguments have been used in establishing the values of the
closure coefficients in most two-equation models. The problems section at the
end of the chapter examines some of the (relatively minor) differences among
the various models.

We can establish the ratio of 3% to 3, by applying the model to decaying
homogeneous, isotropic turbulence. In this kind of turbulence, there are no
spatial gradients of any mean-flow properties wherefore Equations (4.37) and
(4.38) simplify to

dk - dw 2

g7 = B*wk  and = Bow - (4.67)
where we note that, because v, = 0, we have fs = 1 so that 8 = 3, [see
Equation (4.41)]. The asymptotic solution for & is readily found to be

ko~ =P /B (4.68)
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Experimental observations [see Townsend (1976)] indicate that k ~ ¢t~ where
n = 1.25 4 0.06 for decaying homogeneous, isotropic turbulence. Choosing
B* /B, = 1.27 sets the ratio near the center of the range of accepted values.

Values for the coefficients o and #* can be established by examining the log
layer. Recall from Section 3.4 that the log layer is defined as the portion of the
boundary layer sufficiently distant from the surface that molecular viscosity is
negligible relative to eddy viscosity, yet close enough for convective effects to be
negligible. In the limiting case of an incompressible constant-pressure boundary
layer, the mean-momentum equation and the equations for k¥ and w simplify to
the following.

o= 2 [, )
T oy | T oy
oU\ 2 o [k ok
B = (2 = e, | BN 4.69
Y (By) IR Oy [wi‘?y} ( (4.69)
LAY s 040k0w 8 Fkaﬂ
0=a(Gy) ~sut+ S oty |5y
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We will justify the limiting form of these equations when we use perturbation
methods to analyze the log layer in Subsection 4.6.1. We seek the conditions for
which these simplified equations yield a solution consistent with the law of the
wall. As can be easily verified, Equations (4.69) possess such a solution, viz.,

u? Ur

ok i

VB VB KY
where ., is the conventional friction velocity and « is Karman’s constant. There
is one constraint imposed in the solution to Equations (4.69), namely, a unique

relation exists between the implied value of Karman’s constant and the various
closure coefficients. Specifically, the following equation must hold.

a=B,/8" — or?//B* (4.71)

Additionally, according to our solution the Reynolds shear stress, 7uy, is
constant and equal to u2. Inspection of Equations (4.70) shows that this implies
Toy = VB k in the log layer. A variety of measurements [Townsend (1976)]
indicate the ratio of 7z, to k is about 3/10 (i.e., Bradshaw’s constant) in the
log layer. This is the same ratio Bradshaw, Ferriss and Atwell (1967) used in
formulating their one-equation model [c.f. Equation (4.15)]. Thus, the predicted
log-layer solution is consistent with experimental observations provided we select
B* = 9/100. Since we selected 3% /3, = 1.27 above, necessarily 3, = 0.0708.

U= u—;ﬁny + constant, k = (4.70)
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We must work a bit harder to determine the values of o, o* and og4,. As
we will see in Subsections 4.6.2 and 4.6.3, detailed analysis of the defect layer
and the sublayer indicates that the optimum choice is o = 1 /2. Analysis of
free shear flows in Section 4.5 justifies setting o* = 3/5 and o4, = 1/8.
Finally, Equation (4.71) shows that selecting o = 13/25 gives a value for the
Kérméan constant of 0.40. Thus, in summary, the values of the six primary closure
coefficients in the k- model are

%; Bo = 0.0708, ﬁ*:%a, o= %, g = § Ud(J:% (4.72)
These are the values quoted in Equations (4.39) and (4.41).

Other arguments have been used to determine closure coefficients prior to
any applications or computer optimization. Saffman (1970), for example, uses
estimates based on vortex-stretching processes in simple shear and pure extension
to effectively establish bounds on a coefficient similar to . He also requires
that the length scale, ¢, be discontinuous at a turbulent/nonturbulent interface
and finds that his model requires ¢ = ¢* = 1/2 to guarantee such behavior.

Zeierman and Wolfshtein (1986) use the fact that very close to separation,
measurements [Townsend (1976)] indicate the law of the wall is replaced by

1 [yaP
U— = %B:E as  y —0 (4.73)

They also observe from measurements of Laufer (1950) and Clark (1968) that,
for flow near the center of a channel, the turbulence kinetic energy and velocity
are closely approximated by

& =

k/ko =~ 1+4+6.67(y/R)?
U/U, = 1-0.242(y/R)? as y— R (4.74)
w2 & 0.048U,k.*

Briggs et al. (1996) provide another simple argument that can be used to
establish closure-coefficient values. They have done a Large Eddy Simulation
(LES — Chapter 8) of a shear-free mixing layer, an idealized flow that is relevant
for geophysical studies. In this flow, the turbulent-transport (diffusion) terms
balance dissipation terms in the k, w, €, etc. equations. For example, the k-w
model simplifies to

(4.75)
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where we observe that, since the production terms are zero the stress limiter has
no effect in this flow, necessarily v = k/w. Briggs et al. conclude that the
asymptotic behavior of k and vr is

ke~ Ky 2% and vy~ Yy 042 as y — oo (4.76)

where X and V are constants. Matching this asymptotic behavior yields a con-
straint on the values of 3,, 8%, o, o* and o4,. In the absence of cross diffusion,
for example, the Briggs et al. behavior is consistent with setting 08" = ¢*3,.
For the values given in Equation (4.72), the k-w model predicts k ~ Ky~ 2-6®
and vy ~ Vy~034, which is fairly close to the LES behavior. Briggs et al. also
show that the k-e model predicts &k ~ Ky™%° and v ~ Vy~*>, which bears
no resemblance to the LES results.

In conclusion, the specific flows selected for determination of the closure
coefficients are a free choice of the developer. For example, using data for
homogeneous turbulence and boundary layers assumes we have a degree of uni-
versality that may be grossly optimistic. That is, we are implicitly assuming our
model is valid for grid turbulence, boundary layers, and many flows in between.
Dropping homogeneous turbulence in favor of more boundary-layer data may
yield a model optimized for boundary layers but restricted to such flows. Ideally,
we would find flows that isolate each closure coefficient. Often, more than one
is involved [e.g., Equation (4.71)]. In any event, for the sake of clarity, the
arguments should be as simple as possible.

4.5 Application to Free Shear Flows

Our first applications will be for free shear flows. In this section, we seek
similarity solutions to determine farfield behavior for the plane wake, mixing
layer, plane jet, round jet and radial jet. In addition to developing the similarity
solutions for the k-w and k-e models, we also discuss several aspects of the solu-
tions and differences between the k-w and k-¢ models. These include: solution
sensitivity to freestream boundary conditions; (b) cross diffusion; and, (¢) the
round-jet/plane-jet anomaly.

Solution sensitivity to freestream boundary conditions is an issue that pre-
viously has not been completely understood. We will find that solutions for
two-equation turbulence models are sensitive to the freestream value of w, ¢,
etc. even when boundary conditions are chosen so that & and v, are both very
small in the freestream. Cross diffusion is a term appearing in the w, € or other
second transport equation that results from making a formal change of variables
in transforming from one set of turbulence parameters (e.g., £ and w) to another
(e.g., k and ¢ or k and £). We will see how cross diffusion affects free-shear-
layer predictions. The round-jet/plane-jet anomaly is a classical problem that has
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plagued turbulence models. Many models predict that the round jet grows faster

than

the plane jet, while measurements show the opposite to be true. We will

see which models suffer from the anomaly and which do not.

4.5.

1 Developing the Similarity Solution

There are two noteworthy changes in our approach to obtaining a solution for

free
1

shear flows.

. For the mixing layer and the jets we can choose our similarity variable to

be n = y/z. That is, with no loss of generality, we can set all scaling
constants such as A in Equations (3.70) and (3.71) equal to one. We had
to carry such scaling coefficients for the mixing-length model because, by
hypothesis, the mixing length is proportional to the width of the layer,
which is proportional to the coefficient A. With two-equation models, the
turbulence length scale is determined as part of the solution so that the
way in which we scale the similarity variable 7 is of no consequence.

While the rest of the methodology is the same, the addition of two extra
differential equations complicates the problem somewhat. Because they
are the most widely used two-equation models, we confine our attention
to the k-w and k-¢ models.

With the standard boundary-layer/shear-layer approximations, the equations of
motion become:

;%5% [z™U] + 3’%% [¥/V] =0 4.77)
v v%g = yijé% [V 7] (4.78)
Tay = ;,,,,%’r_ (4.79)
k-w Model:
U%+Vg~:—;=frm%-—ﬁ*wk+y%%[yja*ggﬂ \

O ou
U@"—FV—Q{ZQE’J}Q?[}WQ—F_——"—‘F‘—_
Yy

L
"“{D& W = max ) lim \/ﬁ—*

oz y k

!8U/8;;;|}
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(4.81)

In Equations (4.77) — (4.81), j = 1 for the round jet and m = 1 for the radial
jet. Otherwise, j and m are zero. The similarity solution for the various free

shear flows can be written in the following compact form.

Far Wake:

Ulz,y) = U — \/gu(n)a k(z,y) = %K(n)

U, DU,
Y= —2W = =
w(z,y) = ——W(n) e=,9) po E(n)
_ o] PUS
"= D,

Mixing Layer:

Ulz,y) = Uild(n), k(z,y) = UK(n)
T 3
o) = DW), e(zy) = SE@)

_ Y
= -
xz

Jet:
e J

Uz, ¥) = —mrnp Ym, k@9 = oy

J1/2 JS/Q
wiz, y) = a2

"r?:

8w

X

>

K(n)

Wi(n), elz,y)= WE(WJ

4

(4.82)

(4.83)

(4.84)
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Substituting these self-similar representations into the mean-momentum equation
yields the general form

U 1.d : d

where the functions N(n) and V(n) are transformed eddy viscosity and normal
velocity-like functions, respectively. The two terms on the left-hand side of
Equation (4.85) are essentially vertical convection and diffusion. The term on
the right-hand side is a source term that originates from the streamwise convection
of momentum, while the function f,(7n) reflects the k-w model’s stress limiter.
Table 4.3 lists the coefficient S, and the normal-velocity function, V(n), for each
of the free shear flows considered. The transformed &, « and ¢ equations are:

k-w Model;
dK 1 d][ . . . dK dU wirrrr
T NG - SkK+fNN(dn) T
r 1 5 2
Vddu — —;d—d- linjcrN%[K] = .SwW+afNN% (%Z)
n  nldy n 7 L (4.86)
y o4 dK dW
W dn dn
K VB*W
N =—, =i {9 (€ }
we { “m dd / dn) J
k-e€ Model
dK 1 d N dK dU
dn n’/dp

N{—) —-E
nmdn] SaAnE (n)
E

' 2
E E?
¢F 1 d [ NdE} S, E+C“'1K (d_b() st @ (4.87)

dn  nidn | ocdy dn K
K2
N_C;U._E-_J fu=1 J

The k, w and € equations contain convective terms, diffusion terms, and addi-
tional source terms corresponding to streamwise convection, production, dissipa-
tion and cross diffusion. Table 4.3 lists the convective source-term coefficients,
Sk, Sw and S.. The table also lists the exponents j and m for each free shear

flow.
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Table 4.3: Free Shear Flow Parameters.

[ Flow | Su [ Sk [ Sw | S [7]m] V(n) |
Far Wake 2 1 1 2 0|0 —1n
Mixing Layer | 0 0O | U { U 0] O — fo U(n")dn'
Plane Jet fulu |3ujsujo|o| =% u@)dy
Round Jet U [2U | 2U [ 4U | 1| 0 | =% [TU )ndy
Radial Jet U (2u|2u4u o1 — Jo U )dn

To complete the solution, we must specify the vortex-stretching parameter x.,
defined by

Q€8 Ski
3
(B*w)
to specify the function f; [see Equation (4.41)] appearing in the k-w model.
Because evaluation of this parameter involves matrix multiplication, it is worth-

while to illustrate details of the mathematics, For two-dimensional shear flows,
the strain-rate and rotation tensors are

Xo = (4.88)

au au

% 35 o 0 35y O
Syl~ | 2% & 0| and yl~ | -3 0 0| (489)
0 0 0 0o 0 o0

where x and y denote streamwise and normal directions, respectively. Hence,

o

for two-dimensional incompressible flow, we have

QijQeSki = Q120221511 + Q21012522
1 /UN* (oU oV
ogtd ff SES e 2 [ 2 .90
4(83;) (5$+3y) ° (420
where we use the fact that the divergence of the velocity vanishes for incom-

pressible flow. This corresponds to the fact that vortex stretching is exactly zero
in two-dimensional flows. Thus, we conclude that

Xw =0, Plane jet (4.91)
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By contrast, for general axisymmetric flows, these two tensors are

i &= 0 (%= +%=) |

[Si5] =~ 0 Ye 0 (4.92)
| s (G 8y © 5
B 0 0 3G —20) ]

[€2;] ~ 0 0 0 (4.93)
| =505 ) 10 0 |

where z and r denote axial and radial directions, respectively. So, for incom-
pressible flow, there follows

Qi ieSes = 13031511 + 310213533
_ _1(ou. aU\*[auU, . 8U,
= T4\ 3z " or o ' ox

1 /80U, aUu\2U,
- ((FT-5) & (494

where we use the fact that the continuity equation in axisymmetric flows is

Hi BU L T s
0, , OU, U U _(BUerdUr) .

Ox or ro L ro dzr or
Hence, x. is nonzero for axisymmetric flows. This reflects the fact that rings
of vorticity with an axis parallel to the direction of flow can be stretched as the
flow spreads radially.

Finally, we must make this equation consistent with the notation used in
Equations (4.77) — (4.79). For the round jet we have U, = U, U, =V, z = z
and r = y, while the radial jet has U, =V, U, =U,z =y and r = z. Noting
that OU/0y > OV /Ox for shear layers, the parameter x., is

(0, Plane jet
1(8U/ay)*
1 (frw)’

2
1@%%)— g, Radial jet
iG] @

K , Round jet
Yy (4.96)
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In terms of the similarity solution, we have®

(0, Plane jet
2
| (%) u@, Round jet
X. =4 4\dn/ (BW) (4.97)
)
L (g) ~—~Z—J—§, Radial jet
L 4 \dy /) (W)

Finally, we must specify the parameter A appearing in the RNG k-e model
[Equation (4.51)]. In terms of similarity variables, A 1s

K |dU
Y i b 4.98
A E|dﬂ (4.98)

Boundary conditions on the velocity are the same as in Chapter 3. We must
also specify boundary conditions for K, W and E. Solutions for two-equation
models often feature (nonphysical) sharp turbulent/nonturbulent interfaces for
free shear flows, i.e., interfaces at which derivatives of flow properties are dis-
continuous (see¢ Subsection 7.2.2). Consequently, the most sensible boundary
conditions in the freestream are those corresponding to nonturbulent flow, i.e.,
K(n), W(n) and E(n) all vanish approaching the edge of the shear layer. As
it turns out, two-equation-model solutions are affected by finite values of K, W
and £ in the freestream, and are sensitive to the freestream value of £ or W.
Subsection 4.5.3 focuses in more detail on this sensitivity. The most appropriate
boundary conditions for K, W and E are as follows.

Wiake and Jet:
K"(O) = W’(O) = E’(O) =0 (4.99)

Wake, Jet and Mixing Layer:

K(n) — 0, W{(n) — 0, and E(n)—0 as |n— o0 (4.100)

This completes formulation of the similarity solution for the k-w and k-€
models. We have demonstrated that all pertinent equations and boundary condi-
tions transform to a set of equations and boundary conditions that can be written
in terms of the similarity variable, n. In so doing, we have formulated a nonlin-
ear, two-point boundary-value problem that obviously cannot be solved in closed
form. In the next section, we discuss the numerical solution.

_ SIn terms of similarity variables, the radial velocity, V(z,y), for the round jet transforms to
V(n) = dF/dn — F(n)/n. where F(n) is the transformed streamfunction. We have defined
U(n) =n~1dF/dn and V(n) = F(n)/n. Thus, the similarity form of |V (z,3)/y| is [d — V/nl.
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4.5.2 Numerical Solution

As in Section 4.2, we use the conventional definition of spreading rate for
the wake, which is the value of 7 given in Equation (4.82), where the velocity
defect is half its maximum value. Similarly for plane, round and radial jets,
the spreading rate is the value of y/x where the velocity is half its centerline
value. For the mixing layer, the spreading rate is the difference between the
values of y/x where (U —U,)? / (U, —U3)? is 9/10 and 1/10. Table 4.4 compares
computed (using Programs WAKE, MIXER and JET — see Appendix C) and
measured spreading rates for the k-w, k-¢ and RNG k-e¢ models. Figures 4.8
through 4.11 compare computed and measured velocity profiles for these three
models.

Table 4.4: Free Shear Flow Spreading Rates for Two-Equation Models.

| Flow | k-w Model | k-e¢ Model | RNG k-¢ Model | Measured ]
Far Wake 0.326 0.256 0.290 0.320-0.400
Mixing Layer 0.096 0.098 0.099 0.103-0.120
Plane Jet 0.108 0.109 0.147 0.100-0.110
Round Jet 0.094 0.120 0.185 | 0.086-0.096
Radial Jet 0.099 0.094 0.111 0.096-0.110

Of the three models, the k-w model is closest to measured spreading rates.
With the exception of the mixing layer, computed spreading rates fall within
the range of measured values. The predicted mixing-layer spreading rate is 6%
below the lower bound of measured values. Using the average values from the
measured ranges, the average difference between theory and experiment is 6%.

The k-e¢ model predicts a spreading rate that is 20% lower than the lower
bound of measured values for the far wake, 5% lower than measured for the
mixing layer, 2% lower for the radial jet and 25% higher than the upper bound
measured for the round jet. Only for the plane jet does its predicted spreading
rate fall within the range of measured values. The average difference between
computed and average measured spreading rates for the k-¢ model is 17%. The
RNG k-¢ model yields even larger differences (an average of 36%), including a
predicted round-jet spreading rate that is double the measured value.

Figures 4.8 — 4.12 reveal an especially noteworthy feature of the k-w solu-
tions. The figures show the smooth variation of the velocity profiles approaching
the freestream for all five free shear flows, which is consistent with measure-
ments. By contrast, the k- model predicts a nonphysical discontinuous slope in
the velocity profile at the edge of the shear layer for the wake, the mixing layer
and the radial jet. The RNG k-¢ model predicts discontinuous slope for all five
cases.
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Figure 4.8: Comparison of computed and measured velocity profiles for the far
wake; k-w model; - - - k-e model; - - - - RNG k-€ model; e Fage and Falkner
(1932); o Weygandt and Mehta (1995).
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Figure 4.9: Comparison of computed and measured velocity profiles for the
mixing layer; k-w model; - - - k-e model; - - - - RNG k-e model, o Liepmann
and Laufer (1947).
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Figure 4.10: Comparison of computed and measured velocity profiles for the

plane jet; —— k-w model; - - - k-c model; ---- RNG k-¢ model; o Bradbury
(1965); e Heskestad (1965).
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Figure 4.11: Comparison of computed and measured velocity profiles for the
round jet; —— k-w model; - - - k-¢ model; - --- RNG k-€ model; o Wygnanski
and Fiedler (1969); e Rodi (1975).
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Figure 4.12: Comparison of computed and measured velocity profiles for the
radial jet: —— k-w model; - - - k-€ model; -- .- RNG k-¢ model; o Witze and
Dwyer (1976).

Table 4.5 lists computed spreading rates for five other models that illustrates
how difficult it has proven to be to develop a model that adequately describes free
shear flows. Values listed for the k-¢ model are from Robinson et al. (1995). All
other values have been obtained using modified versions of Programs WAKE,
MIXER and JET - see problems section. The Robinson et al. (1995) enstrophy-
equation (k-{) model predicts spreading rates that are quite close to measured
values for all five free shear flows. By contrast, the Speziale et al. (1990) k-7
model and the Peng et al. (1997) and Kok k-w models predict spreading rates
that are significantly smaller than measured. Finally, the Wilcox (1988a) k-w
model predicts spreading rates that are larger than measured for all five cases.

Table 4.5: More Two-Equation Model Free Shear Flow Spreading Rates.

Robinson Speziale Peng et al. Kok Wilcox
Flow et al, k-¢ | etal, k-7 k-w k-w (1988a) k-w Measured
Far Wake 0.313 0.221 0.206 0.191 0.496 0.320-0.400
Mixing Layer 0.112 0.082 0.071 0.056 0.141 0.103-0.120
Plane Jet 0.115 0.089 - 0.083 0.135 0.100-0.110
Round Jet 0.091 0.102 0.096 0.107 0.369 0.086-0.096
Radial Jet 0.097 0.073 0.040 0.068 0317 0.096-0.110
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The latter results provide a definitive measure of how the addition of cross
diffusion and the modification to 3 defined in Equations (4.39) — (4.42) improves
the k-w model. The addition of cross diffusion produces more production relative
to dissipation in the w equation. This, in turn, increases w and thus the dissipation
in the k equation, which reduces computed spreading rates for free shear flows
in general. The variation of 3 with x,, reduces dissipation relative to production
in the w equation for round and radial jets, which further increases dissipation in
the & equation. Hence, both modifications counter the Wilcox (1988a) model’s
excess production, relative to dissipation, for free shear flows.

4.5.3 Sensitivity to Finite Freestream Boundary Conditions

Two-equation models have a unique, and unexpected feature when nonzero
freestream boundary conditions are specified for k, w, €, etc. Specifically, even
if we select k and the second turbulence property (w, ¢, etc.) to be sufficiently
small that both & and v, are negligible, the solution is sensitive to our choice of
the second turbulence property’s freestream value. This is an important consid-
eration since most computations are done with these assumptions.

Figure 4.13 shows how the spreading rate, §’, varies with the freestream
value of w for the k-w meodel defined in Equations (4.36) — (4.42) and the
Wilcox (1988a) k-w model for the far wake, the mixing layer and the plane
jet. It also shows the variation of 4’ with the freestream value of € for the
Standard k-¢ model defined in Equations (4.46) — (4.50). In all three graphs,
d,, is the predicted spreading rate for the limiting case wo, — 0 for the k-w
models and €., — O for the k-e model. All computations have been done with
the dimensionless eddy viscosity, N (oco), equal to 1075,

&' /5, &' /8L &' /8]
1.2 T | T T 1.2 T T | — 1.2 T T T T
1.0 1.0 1.0
0.8 0.8 0.8
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0 i 1 ] i 0 1 I 1 L 0 i 1 1 i

0 02 04 06 08 .10 0 02 64 06 08 .10 0 02 04 06 08 .10
Woa /W0, €00 /€0 Woo /W, €oc /€0 Wo fwp, €co /€0
(a) Far wake (b) Mixing layer (c) Plane jet

Figure 4.13: Sensitivity of free shear flow spreading rates to freestream condi-
tions: ---- k-€ model; —— Wilcox (2006) k-w model, - - - Wilcox (1988a) k-w
model. wo and €, are for n = 0.
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All three models predict a decrease in spreading rate as the freestream value
of w or ¢ increases. In all three graphs, the freestream value is scaled with respect
to the value at n = 0, which is very close to the maximum value for each flow.
As shown, without cross diffusion, the k-w model displays a strong sensitivity
to the freestream value of w. The addition of cross diffusion greatly reduces
the sensitivity. The k-e¢ model predicts very little sensitivity to the freestream
value of e. The graphs also show that if the freestream value is less than 1% of
the maximum value [we /wo < 0.01, € /eg < 0.01] there is virtually no effect
on the predicted spreading rate. Certainly this is not an unreasonable constraint
because using a freestream value of w or € in excess of 1% of the peak value
would very likely correspond to using a physically unrealistic value.

There is no mystery about why the solution should have some sensitivity to
freestream boundary conditions. We are, after all, solving a two-point boundary-
value problem, which requires freestream boundary conditions on all variables,
including w and €. In light of this, it is clear that there must be some range of
boundary values that affect the solution. Figure 4.13 shows that there is a well
defined limiting form of the solution for vanishing freestream boundary values,
further validating the claim that Equations (4.99) and (4.100) are the proper
freestream boundary conditions.

It is the odd nature of the differential equation for ¢ that makes the k-e model
much less sensitive to freestream conditions than the k-w model. Specifically,
because its dissipation term is proportional to ¢2/k, the equation is singular as
k — 0 for finite freestream values of €. This unusual behavior of the € equation
obviates the need to invest enough thought to avoid prescribing physically unre-
alistic freestream values for a quantity such as e. While this may be comforting
to engineers who don’t care to invest such thought, the next example should serve
as a wake-up call that being sloppy with freestream boundary conditions can foil
the “protection” provided by the € equation. As we will see, using nomencla-
ture coined by Menter (1992c¢), the k-¢ model has “degenerate™® solutions for
excessively large freestream values of e.

To further demonstrate how farfield boundary conditions affect two-equation
model predictions we now focus on one-dimensional propagation of a turbulent
front into a quiescent fluid. This problem has been analyzed by several authors,
including Lele (1985) and Wilcox (1995b). Briefly, we imagine a planar source
of turbulence at x = 0 where we maintain constant values of k = k, and w = w,
or € = ¢, for all time. The turbulence source is instantaneously “turned on” at
time ¢ = 0, and a front propagates into the fluid at a finite rate.

Figure 4.14 shows computed dimensionless v, and w profiles for farfield
values of w equal to 0.00lw, and 0.5w, based on the Wilcox (1988a) k-w
model. Both computations have been done with the farfield value of k chosen

6 Although his nomenclature is incorrect in a strict mathematical sense, Menter refers to a solution
that differs greatly from the zero freestream boundary conditions solution as being degenerate,
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Figure 4.14: Turbulent front propagation — Wilcox (1988a) k-w model. The 10
curves displayed in each graph are computed profiles at 10 different times as
the front advances to the right.

so that the farfield eddy viscosity is 107° times the value at x = 0. The graphs
all include a family of curves corresponding to 10 different times, with the front
advancing to the right. The motion of the front is clearly indicated by the v,
curves, which exhibit the sharp interface between the spreading turbulence and
the nonturbulent fluid.

Inspection of the curves shows that when the freestream value of w is 0.00 1w,
the w curves all tend smoothly to the farfield value as the front advances. By
contrast, when w = 0.5w,, the farfield value has a strong effect on the solution.
It places a large lower bound on w, and causes the solution to have discontinuous
slope at the front. It also retards the rate at which the front advances. Specifically,
when w = 0.5w,, the rate of advance of the front is only about 40% of the rate
for w = 0.001w,. Results that follow for the k-e model strongly suggest that
this effect would be reduced — but not eliminated — if the computations were
repeated with cross diffusion included in the k-w model.
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Figure 4.15: Turbulent front propagation — k-¢ model. The 10 curves displayed
in each graph are computed profiles at 10 different times as the front advances
to the right.

Figure 4.15 includes similar graphs for the Standard k-e model, corresponding
to farfield values of € equal to 0.001¢, and 0.5¢,. Again, both computations have
been done with k., chosen so that the farfield eddy viscosity is 10™° times the
value at the origin. The rate of advance of the turbulent front for ¢ = 0.5¢, is
65% of the rate for € = 0.001¢,. Thus, while the effect of the farfield condition
is smaller for the k-¢ model than for the k-w model, it is nevertheless very
substantial.

Clearly, some degree of care must be exercised when selecting freestream
or farfield boundary conditions for two-equation models. It is not sufficient to
simply select small values for k£ and v, as the choice can imply a nonphysically
large value of the second turbulence parameter, viz., w, € or £. In complex flows,
estimates should be made regarding the peak value of the second variable in
regions of intense shear, to be sure the freestream value is small enough. To
be certain appropriately small values are used in the freestream, the values can
always be adjusted as the computation proceeds.
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4.5.4 Cross Diffusion

There is an interesting relationship between k-e and k-w models (or any pair of
models whose second variable is £™e™ for some m and n) that helps delineate
some of the key differences. Specifically, if we let € = Cpkw define a change
of dependent variables from e to w, it is a straightforward matter to demonstrate
that the resulting equation for w is

Ow Ow w  OU; 9 0] dw

. LR A s (g @it o ne LY

3t T Ox O day P 0w [(V +ovr) 3@,}
(v+ovy) Ok Ow w 8 ok

== |(o~0") v, 4,
k (9:Ej 8323‘ + k@:c} (0’ 7 )Vramj ( 101)
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where 8* = C,. Also, o, 3, o and o* are simple functions of the k-¢ model’s
closure coefficients (see problems section). Focusing on free shear flows, we
can ignore molecular viscosity, v. Also, if we assume o = o* for simplicity,
Equation (4.101) simplifies to

Ow ow  w OU; 5 1 8k Ow o Ow
g UJ-E)?J = ak‘ﬁjamj ﬁw +de 833}' 8.’8j + B.Ij [O’I/TB:—E;:! (4102)

where o4 = 20. The term proportional to o4 in Equation (4.102) is referred to
as cross diffusion, depending upon gradients of both k& and w.

The cross-diffusion term as listed in Equation (4.102) appears only because
we started with the k-¢ model. To argue that the cross-diffusion term is “miss-
ing” from the k-w model, as several authors have done, assumes the modeled
€ equation is in some sense more fundamental than the modeled w equation.
Given how poorly the k-e model fares in predicting turbulent flows, especially
wall-bounded flows (see Sections 4.6 through 4.10), the argument 1s obviously a
non sequitur.

In free shear flows the cross-diffusion term enhances production of w, which
in turn increases dissipation of k (assuming o4 > 0). This occurs for small
freestream values of k£ and w, for which both quantities decrease approaching the
shear-layer edge. The overall effect is to reduce the net production of k, which
reduces the predicted spreading rates from the values listed in Table 4.5.

Several authors, including Speziale et al. (1990), Menter (1992¢), Wilcox
(1993a), Peng et al. (1997), Kok (2000) and Hellsten (2005) have attempted to
improve the k-w model by adding cross diffusion. While all have achieved some
degree of success in wall-bounded flows, the models are far less realistic for
free shear flows. Inspection of Table 4.5 shows that spreading rates predicted by
such models differ significantly from measured values.’

TThe spreading rates predicted by the Speziale et al. k-w model are identical to those of the
Speziale et al. k-r model, which are much smaller than measured.
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Menter (1992c) and Hellsten (2005) have enjoyed more success with cross
diffusion than Speziale et al. and Peng ¢t al. Both introduce “blending functions”
that cause all of the model’s closure coefficients to assume values appropriate
for the k-w model near solid boundaries, and to asymptotically approach values
similar to those used with the k-e model otherwise. The net result is a model
that behaves very much like the Wilcox (1988a) k-w model for wall-bounded
flows, and more like the k-¢ model for free shear flows.

Wilcox (1993a) and, more recently, Kok (2000) have tried a similar concept
with the cross diffusion coefficient, og, given by
o B

8::: g ox 7

04 = (4.103)
Ok 8o
Ge0; Ox J Ox i >'

Additionally, the value of o* assumes a value larger than 1/2. As we will see
in Subsection 4.6.2, it is important to suppress this cross-diffusion term close
to solid boundaries for wall-bounded flows. Just as Menter's blending function
causes og4 to approach 0 near a solid boundary, so does Equation (4.103) since &
increases and w decreases in the viscous sublayer. While simpler than Menter’s
blending-function approach, Wilcox and Kok chose values for o4, that yield
free shear layer spreading rates that are farther from measurements than those
predicted by the k-e model. Specifically, Wilcox set 04, = 3/10, ¢ = 3/5 and
o* = 1, while Kok opted for 64, =0 = 1/2 and o™ = 2/3.

However, other values of the £-w model’s closure coefficients exist that yield
closer agreement with measured spreading rates. Note first that based on the
analysis of a turbulent front by Lele (1985), there are two necessary conditions
for the front to propagate. Specifically, we must have

Odo >0 — 0 and o* > o4 (4.104)

These constraints also follow from analysis of a turbulent/nonturbulent interface
(see Section 7.2.2). Figure 4.16 shows how predicted spreading rates vary with
o 4o for the far wake, the mixing layer and the plane jet. The curves shown have
been computed with all other closure coefficients as specified in Equations (4.39)
and (4.41). To isolate effects of cross diffusion, results shown correspond to
having no stress limiter, i.e., © = w in Equation (4.36). The limiter has virtually
no effect on the far wake and the plane jet. It reduces the mixing-layer spreading
rate by less than 6%. Of greatest relevance to the present discussion, the value
of o* is 3/5. As shown, spreading rates for all three cases are greatest when o4,
is equal to its minimum permissible value according to Equation (4.104), viz.,
040 = o* — 0. The predicted values decrease monotonically as o4, increases
and fall below the lower bound of measured spreading rates for all three cases
when o4, = 1/5, which is much less than the maximum allowable value of 3/5.
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Figure 4.16: Effect of cross diffusion on free shear flow spreading rates for
o* = 3/5 and 0 = 1/2. The shaded areas depict measured-value ranges.

Figure 4.17 shows how predicted spreading rates vary with ¢* when we set
0do ¢qual to its minimum permissible value. As above, computations have been
done with all closure coefficients other than o* as specified in Equations (4.39)
and (4.41) in the absence of the stress limiter. Computed spreading rates, &', for
all three cases decrease monotonically as o™ increases. Computed ¢’ values lie
above the range of measured ¢’ for all three cases when o* < 0.55, and below
when o* < 0.70. Thus, we conclude that

0.55 < g" < 0.70 (for o =1/2) (4.105)

These results provide the rationale for selecting ¢* = 3/5 and oy, = 1/8 in the
Wilcox (2006) version of the k-w model [see Equations (4.39) and (4.40)].
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Figure 4.17: Effect of cross diffusion on free shear flow spreading rates for
Odo = 0* — o and o = 1/2. The shaded areas depict measured-value ranges.



154 CHAPTER 4. ONE-EQUATION AND TWO-EQUATION MODELS

4.5.5 The Round-Jet/Plane-Jet Anomaly

Inspection of Tables 4.1, 4.4 and 4.5 shows that all but two of the turbulence
models listed predict that the round jet spreads more rapidly than the plane
jet. The two exceptions are the k-w model and the Robinson et al. (1995)
enstrophy-equation model. However, measurements indicate the opposite trend,
with the round-jet spreading rate being about 10% lower than that of the plane
jet. This shortcoming, common to most turbulence models, is known as the
round-jet/plane-jet anomaly.

Pope (1978) has proposed a modification to the € equation that resolves
the round-jet/plane-jet anomaly for the k£-¢ model. In Pope’s modification, the
dissipation of dissipation term in the € equation is replaced by

€2 €2
062? — [Cea — CesXyp) T (4.106)
where y, is a “nondimensional measure of vortex stretching” defined as
45k Ski
Xp = W (4.107)

The tensors £2;; and S;; are the mean-rotation and mean-strain-rate tensors de-
fined in Equation (4.43).

Pope’s reasoning is that the primary mechanism for transfer of energy from
large to small eddies is vortex stretching. Any mechanism that enhances vortex
stretching will increase this rate of transfer. Since the energy is being transferred
to the smallest eddies where dissipation occurs, necessarily the dissipation, e,
must increase. Because mean-flow vortex lines cannot be stretched m a two-
dimensional flow, x, is zero for the plane jet. By contrast, as shown earlier
[see Equations (4.89) — (4.96)], the vortex-stretching parameter is nonzero for an
axisymmetric mean flow. As argued by Pope, this corresponds to the fact that
vortex rings are being stretched radially. Thus, we expect to have x, # 0 for a
round jet.

Using Cez = 0.79 reduces the k-¢ model’s predicted spreading rate to 0.86,
consistent with measurements. However, as pointed out by Rubel (1985), the
Pope correction has an adverse effect on model predictions for the radial jet,
which also has nonzero x,. Without the Pope correction, the k-e model predicts
a radial-jet spreading rate of 0.094 which is close to the measured range of 0.096
to 0.110 [see Tanaka and Tanaka (1976) and Witze and Dwyer (1976)]. Using
the Pope correction for the radial jet reduces the k-¢ model-predicted spreading
rate to 0.040. Hence, as noted by Rubel, “the round jet/plane jet anomaly has
been exchanged for a round jet/radial jet anomaly.”

In contrast to the k-¢ model, as indicated in Table 4.5, the Wilcox (1988a)
k-w model predicts comparable spreading rates for both the round and radial
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jets, both larger than the predicted plane-jet spreading rate. The same is true of
the k-w model defined in Equations (4.36) — (4.42). When a constant value of
(3 = 0.0708 is used for the latter, the predicted round- and radial-jet spreading
rates are 0.177 and 0.168, respectively. Numerical experimentation shows that if
£ is reduced to 0.06, the model’s spreading rates for both the round and radial
jets are close to the measured values. Since Pope’s argument implies nothing
regarding the functional dependence of the modification upon the dimensionless
vortex-stretching parameter, x,, it is completely consistent to propose that (3
depend upon this parameter in a manner that reduces the value of 3 as needed
for both flows. Thus, as a generalization of the Pope modification, the k-w model
uses the following prescription for 3.

B = Bofa (4.108)

where

. 1+ 85x,
Bo = 0.0708, fs= 1T 100y, (4.109)
and
;26 Sk:
D I | e (4.110)
(8*w)?

Comparison of Equations (4.107) and (4.110) shows that Xo = |Xp|- Also, the
functional form of f, is such that its asymptotic value is 0.85, so that 5 = 0.06
for large values of x,,. Finally, note that the vortex-stretching parameter normally
is very small in axisymmetric boundary layers because w is very large.

Interestingly, the Robinson et al. (1995) enstrophy-equation model contains
a term similar to the Pope modification. The vortex-stretching mechanism that
it represents plays an important role in the model’s ability to predict the mea-
sured spreading rates for all three jets within a few percent of measurements.
Although the usefuliess of Pope’s correction as represented by Equations (4.106)
and (4.107) is limited by a flaw in the k-e¢ model, the concepts underlying the
formulation are not. We can reasonably conclude that Pope’s analysis provides
a sensible reflection of the physics of turbulent jets, at least in the context of
w-based two-equation models.

Our analysis of free shear flows is now complete. In the following sections
we turn our attention to wall-bounded flows. To demonstrate how two-equation
models fare for such flows, we are going to use a powerful mathematical tool to
analyze fine details of model-predicted structure of the turbulent boundary layer.
In particular, we will use perturbation methods to analyze the various regions
in the turbulent boundary layer.
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4.6 Perturbation Analysis of the Boundary Layer

The differential equations for all but the simplest turbulence models are suffi-
ciently complicated for most flows that ctosed-form solutions do not exist. This
is especially true for boundary layers because of nonlinearity of the convection
terms and the turbulent diffusion terms attending introduction of the eddy vis-
cosity. Our inability to obtain closed-form solutions is unfortunate because such
solutions are invaluable in design studies and for determining trends with a pa-
rameter such as Reynolds number, or more generally, for establishing laws of
similitude. Furthermore, without analytical solutions, our ability to check the
accuracy of numerical solutions is limited.

There is a powerful mathematical tool available to us to gencrate approximate
solutions that are valid in special limiting cases, viz., perturbation analysis. The
idea of perturbation analysis is to develop a solution in the form of an asymptetic
expansion in terms of a parameter, the error being small for sufficiently small
values of the parameter. Our desire in developing such an expansion is for the first
few terms of the expansion to illustrate all of the essential physics of the problem
and to provide a close approximation to the exact solution. Fortunately, this is
usually the case in fluid mechanics. This section shows how perturbation analysis
can be used to dissect model-predicted structure of the turbulent boundary layer.
Appendix B introduces basic concepts of perturbation theory for the reader with
no prior background in the field.

4.6.1 The Log Layer

We direct our focus to the turbulent boundary layer. Experimental observations
provide a strong argument for using perturbation analysis. Specifically, Coles’
description of the turbulent boundary layer as a “wake-like structure constrained
by a wall” (see Figure 3.9) suggests that different scales and physical processes
are dominant in the inner (near-wall) and outer (main body) parts of the layer.
These are concepts upon which perturbation analysis is based. Coles [see Coles
and Hirst {1969)] makes an explicit connection with perturbation theory in saying:

“The idea that there are two distinct scales in a turbulent boundary
layer is an old one, although quantitative expressions of this idea
have evolved very slowly... To the extent that the outer velocity
boundary condition for the inner (wall) profile is the same as the
inner velocity boundary condition for the outer (wake) profile, the
turbulent boundary layer is a singular perturbation problem of clas-
sical type. In fact, we can claim to have discovered the first two
terms in a composite expansion, complete with logarithmic behav-
ior.



4.6. PERTURBATION ANALYSIS OF THE BOUNDARY LAYER 157

Often perturbation solutions are guided by dimensional considerations and
a knowledge of physical aspects of the problem. For the turbulent boundary
layer, we can draw from empirically established laws to aid us in developing our
perturbation solution. We observe that close to a solid boundary, the law of the
wall holds. As discussed in Subsection 1.3.5, we can write this symbolically as

Ulz,y) = ur(z) f(ury/v), Ur = /Tw/p (4.111)

Similarly, the main body of the turbulent boundary layer behaves according
to Clauser’s (1956) well-known defect law, viz.,

U(z,y) = Ue(x) — u- (m)F[y/A(a:)], Az) = Ued” /u, (4.112)

The reader should keep in mind that Equation (4.1 12) only applies to a special
class of boundary layers, i.e., boundary layers that are self preserving. Thus, we
seek solutions where F'(y/A) is independent of . As we will see, the model
equations predict existence of such solutions under precisely the same conditions
Clauser discovered experimentally.

We develop the leading terms in a perturbation solution for the turbulent
boundary layer in the following subsections. There are two small parameters
in our problem, the first being the reciprocal of the Reynolds number. This is
consistent with the standard boundary-layer approximations. The second small
parameter is u,/U.. Clauser’s defect law suggests this parameter since the ve-
locity is expressed as a (presumably) small deviation from the freestream velocity
that is proportional to u.. The analysis will lead to a relation between these two
parameters.

The analysis in this section, which is patterned after the work of Bush and
Fendell (1972) and Fendell (1972), shows in Subsection 4.6.3 that the inner
expansion is of the form quoted in Equation (4.111) and is valid in the viscous
sublayer (see Figure 3.8). We also show in Subsection 4.6.2 that the outer
expansion is identical in form to Equation (4.112) and holds in the defect layer.
Formal matching of the sublayer and defect-layer solutions occurs in an overlap
region that is often described as the log layer. In fact, the common part of
the inner and outer ¢xpansions is precisely the law of the wall. Thus, although
it is not formally a separate layer, establishing flow properties in the log layer
permits independent analysis of the sublayer and defect layer. It also forms the
basis of surface boundary conditions for many two-equation turbulence models.
We discuss the log layer in this subsection.

' Before performing any analysis, we anticipate that we will be solving a
singular-perturbation problem. We expect this, but not because of a reduction
in order of the differential equations. Rather, we have no hope of satisfying the
no-slip condition with our outer solution because of the assumed form in the
defect layer, i.e., velocity being a small perturbation from the freestream value.
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Likewise, the sublayer solution, if it is consistent with measurements, predicts
velocity increasing logarithmically with distance from the surface as y — 00 s0
that we cannot satisfy the freestream boundary condition with our inner solution.
This is the irregular behavior near boundaries alluded to in Appendix B where
we define a singular-perturbation problem.

We begin our analysis with the incompressible boundary-layer equations.
Conservation of mass and momentum are sufficient for establishing the form of
the expansions, so that we have no need to introduce the model equations now.
For two-dimensicnal flow, we have

ou oV
v it = 0 (4.113)
ol oUu 1dP & ou
UB:L‘ +V3y __;) dx +3y [(V+VT) By] (@.114)

The easiest way to arrive at the log-layer equations is to derive the sublayer
equations and then to determine the limiting form of the sublayer equations for
y+ — oo. Consistent with the normal boundary-layer concept that variations in
the streamwise (z) direction are much less rapid than those in the normal (y)
direction, we scale = and y differently. Letting L denote a dimension character-
istic of distances over which flow properties change in the z direction, we scale
z and y according to

¢=g¢/L and y" =ury/v (4.115)

The appropriate expansions for the streamfunction and kinematic eddy viscosity
are

Vinner(T,y)  ~ v[fol&yt) + 11 (&, 4T) + O(82))] (4.116)
vr.  (z,y) ~ vINo(&y")+aiNi(€y") +O(2)]  (4.117)

where the asymptotic sequence {1, ¢1, @2, .. .} is to be determined. Conse-
quently, the streamwise velocity becomes

, 5 Ofn
{}(*T} y) o U {ﬁO(ga y+) +¢1ﬁ1(§1y+) 7+ O(QZ)} ) Un = 6§+ (4118)

Substituting into the momentum equation, we obtain

0 Otig v 6
e [(1 + No)a—y:} +O(¢) = s [ﬁT + 0 (fﬂ (4.119)

where the quantity 3r is the so-called equilibrium parameter [see Coles and

Hirst (1969)] defined by
_§*dP
Br = p (4.120)
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In general, we regard 3, as being of order one. In fact, when we analyze
the defect layer, this will be the key parameter quantifying the effect of pressure
gradient on our solution. Additionally, u.6*/v > 1 and 6* < L. Hence, we
conclude that

v
¢ = s (4.121)
and
o} Biig
o [(1 + No )_.WJ = g (4.122)

To enhance physical understanding of what we have just proven, it is worth-
while to return to dimensional variables. We have shown that, to leading order,
the convective terms and the pressure gradient are small compared to the other
terms in the sublayer so that the momentum equation simplifies to

a ou

By [(u+vT)a—y] =/ (4.123)

Integrating once telis us that the sum of the specific molecular and Reynolds
shear stress is constant in the sublayer, i.c., '

ou T,
+vp)—— = -2 4.124;
(v +wv )By p ( )

Equation (4.123) or (4.124) is the equation for the leading-order term in the
inner expansion for a turbulent boundary layer. As we will demonstrate in greater
detail in Subsection 4.6.3, we can satisfy the no-slip condition (I = O)aty =0
while the solution as ¥+ — oo asymptotes to the law of the wall, i.e., velocity
increasing logarithmically with distance from the surface. Another feature of the
solution is that the eddy viscosity increases linearly with y* as ¥t — oo so
that the eddy viscosity becomes very large compared to the molecular viscosity.
Consistent with this behavior, the molecular viscosity can be neglected in Equa-
tion (4.123) or (4.124) for the limiting case y+ — 0o. As noted above, we refer
to the form of the differential equations in this limit as the log-layer equations.
Thus, we conclude that in the log layer we can neglect convection, pressure gra-
dient and molecular diffusion. The momentum equation thus simplifies to the
following:

0=

8 [ oU
[ J (4.125)

oy | oy
To the same degree of approximation, in the log layer, the k-w model equations
for two-dimensional flow (so that x, = 0 = 8 = 3,) simplify to:
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k-w Model:
:,»ng-, a;:ma,x{w, Cuma%_‘?y} )

As can be shown by direct substitution, the solution to Equations (4.125) and
(4.126) is
2

U U Ur
U= —"Tly+C, k=—"4 w= (4.127)
K VB VB* Ky
where C is a constant and the implied value of the Karman constant, &, is
k2 =/B*(B./B" —a)]o (4.128)

Note that the terms proportional to o* and oy disappear because dk/9y = 0.
Also, because Equation (4.127) tells us that 8U /8y = +/B*w, there follows
& = max{w, Ciymw} = w, i.e., the stress limiter has no effect in the sublayer.
The closure coefficient values specified in Equation (4.39) have been chosen to
give £ = 0.40. We discussed the log-layer solution in Section 4.4 to illustrate
how values for some of the closure coefficients have been selected. There are
additional features of the solution worthy of mention. For example, the eddy
viscosity varies linearly with distance from the surface and is given by

This variation is equivalent to the mixing-length variation, £, = sy. Also, the
ratio of the Reynolds shear stress to turbulence kinetic energy is constant, i.e.,

Toy = VO kK (4.130)

In a similar way, the k-e¢ model equations simplify to the following:

k-e¢ Model:
U\’ 3 [v, Ok )

0= oy o prel et L

VT(ay) *T 3 [oké’y]

U\ 2 2 9 [vrBe] ¢ (4.131)

= | e e O B 0
0 e (C?y) 02k+3y{068y]
vy = Cuk?/e
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The solution to Equations (4.125) and (4.131) is

2, 52 :
U = —{€ny + constant, k=-—1_, e=—L (4.132)
K VO Ky
where we again find an implied value for the Kéarman constant, «, viz.,
k2 = \/Ca(Cez — Cor)o, (4.133)

Using the closure coefficient values for the Standard k-e model [Equation (4.49)],
% assumes a somewhat large value of 0.433. For the RNG k-¢ model [Equa-
tions (4.51) — (4.53)], we find « = 0.399.

Keep in mind that the turbulent boundary layer consists of the sublayer and
the defect layer. The sublayer is a thin near-wall region, while the defect layer
constitutes most of the boundary layer. In the spirit of matched asymptotic ex-
pansions, the log layer is the overlap region which, in practice, is usually much
thicker than the sublayer (see Figure 3.8). Part of our reason for focusing on
this region of the boundary layer is of historical origin. Aside from the k-w
model, most two-equation models fail to agree satisfactorily with experiment in
the viscous sublayer unless the coefficients are made empirical functions of an
appropriate turbulence Reynolds number (which we discuss in Subsection 4.9. 1).
Consequently, the log-layer solution has often been used as a replacement for
the no-slip boundary condition. Early k-¢ model solutions, for example, were
generated by enforcing the asymptotic behavior given in Equation (4.132). We
must postpone further discussion of surface boundary conditions pending detailed
analysis of the sublayer. Analysis of the log layer can also prove useful in deter-
mining leading-order effects of complicating factors such as surface curvature,
coordinate-system rotation, and compressibility. As our most immediate goal, we
have, in effect, done our matching in advance. Thus, we are now in a position
to analyze the defect layer and the sublayer independent of one another. We turn
first to the defect layer.

4.6.2 The Defect Layer

In this subsection, we make use of singular-perturbation methods to analyze
model-predicted structure of the classical defect layer, including effects of pres-
sure gradient. Our analysis includes three turbulence models, viz.: the Wilcox
(2006) k-w model; the Standard k-c model; and the RNG k-¢ model. First,
we generate the perturbation solution. Next, we compare solutions for the three
models in the absence of pressure gradient. Then, we examine effects of pressure
gradient for the models. Finally, as promised in Section 4.4, we further justify
the values chosen for o, o* and og4 in the k-w model.
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To study the defect layer, we continue to confine our analysis to incompress-
ible flow so that we begin with Equations (4.113) and (4.114). The perturbation
expansion for the defect layer proceeds in terms of the ratio of friction velocity
to the boundary-layer-edge velocity, u, /Ue, and the dimensionless coordinates,
£ and 7, defined by

E=z/L and n=y/A@), A=U.b"/us (4.134)

where ¢* is displacement thickness and L is a characteristic streamwise length
scale that is presumed to be very large compared to ¢*. As in our approach
to the log layer, we first establish the general form of the solution for the mean
momentum equation. We expand the streamfunction and kinematic eddy viscosity
as follows.

Vourer(X,Y) ~ UeA n—%ﬂ(&,n)ﬂ)(%)] (4.135)
Vryweor (T, )~ Ued™ [No(€,n) +o(1)] (4.136)

Observe that, as is so often the case in perturbation analysis, we needn’t
continue the expansions beyond the first one or two terms to capture most of the
important features of the solution. For the specified streamfunction, the velocity
becomes:

_ Ur Uy _OF
Uz, y) ~ U [1—aU1(£,n)+o(Ue)], Uy = s (4.137)

Substituting Equations (4.134) — (4.137) into the mean conservation equations
[Equations (4.113) and (4.114)] yields the transformed momentum equation, viz.,

adrg a‘;);.l = ( T_Qﬁ'r 2CU‘T) +(6T 2wr)U1+§ {NU 66(/;1] (4138)

where the parameters oy, Bz, o and wy are defined in terms of 6, u, and skin
friction, c¢; = 2(u,/Ue)?, ie

2 dé&* 6* dP o* o du-
G = y PBr=————, Or= v

, w 4.139
cy dr Tw AT cyr’ T cpu, dx ( )

Equation (4.138) must be solved subject to two boundary conditions. First,
to satisfy the requirement that U — U, as y — oo, necessarily

Ui—>0 as 75— (4.140)

Also, we must asymptote to the log-layer solution as 7 — 0. One way to insure
this is to insist that

= ——— as 1n—0 (4.141)
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At this point, we have not greatly simplified our problem. Equation (4.138),
like the original momentum equation, is a partial differential equation. The only
simplification thus far is that molecular viscosity is negligible relative to the eddy
viscosity. However, even this is not necessarily advantageous since the no-slip
velocity boundary condition has been replaced by singular behavior approaching
the surface. And, of course, we are now working in a transformed coordinate
system (&, 7) rather than the familiar Cartesian coordinate system (z,y). So why
go to all this trouble? The answer is, we have only just begun.

Reexamination of the steps we have taken thus far should reveal a familiar
tack; specifically, we appear to be developing a similarity solution. Indeed this is
intentional, and inspection of Clauser’s defect law [Equation (4.112)] shows that
there has been method in our madness. Comparison of Equation (4.112) with
the assumed form of our perturbation expansion for U given in Equation (4.137)
shows that U must be a function only of 7. Thus, we now pose the question as
to what conditions must be satisfied in order for a similarity solution to exist.

Clearly, the coefficients o, 8- and w, must be independent of z, for then
the coefficients of all terms on the right-hand side of Equation (4.138) will
be independent of x. The coefficient o, is of no consequence since, if U; is
independent of z, the left-hand side of Equation (4.138) vanishes regardless of
the value of 0. _

The coefficients oy and w; are simple algebraic functions of Br. To show
this, we begin by performing the formal matching of the defect-layer and sublayer
solutions. As shown in the preceding section,

1
Usras( &5 ) w9t [Eé’ny* + CJ as yt — oo (4.142)

Assuming that a similarity solution exists so that U; depends only upon 7,
straightforward substitution into Equation (4.138) with a vanishing left-hand side
shows that

1
Uy~ —=[~tnn+u —wnfnn+---] as n—0 (4.143)
K

where the constants ug, 41, ... depend upon the complete solution which, in turn,
depends upon what turbulence model is used. We now do a formal matching of
the inner and outer expansions noting that y* = nRes- and the outer solution is
Usurer(&,m) ~ [Ue —u, Ur(n) + -+ ). To match through first order, we require
the following:

Ue 1 uUg

[lﬁny++CJ - [ﬂ—'—l——mfn:r}——] —0 as ym —o00, 50 (4.144)
K Ur K K

Hence, we conclude from matching that:

Ve _ (c+2)+ %EnRe,sa« (4.145)

Ur
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This is a useful result that enables us to compute the skin friction from our
defect-layer solution, a point we will return to later. For our present purpose,
Equation (4.145) enables us to determine w,. That is, since

U,
= = 4.146
U = {C+ @) + LinRes (3450)
Differentiating with respect to x yields
du, dU, /dx B U.dRes- /dx
dx (C+u)+ %fnRep kRegs- [(C + -t:_GQ) o Rl,gnRe&f
_ Ur dUe u2  dRes- (4.147)

FD?; dx kU Res« dzx

Substituting Equation (4.147) into the definition of w, [see Equation (4.139)]
and using the fact that 42 = ZUZ¢y, we find

L =
1o

§* dU. & UZes d (U8
crUe dx crur KUZ6* v dx

6" dU. 1 d . .,

N cplU, dx B Qﬁ:wr@(beé )

B Q- [1 Lcy Ue] dUe 1 U, do*

crUe dx 2k u, dx
oF [1 1 uT] dU, 1 U dd™

(4.148)

& U,

crUe dzx 2k u,r dx

We can compute dé*/dz and dU, /dx from the definitions of ar and B given
in Equation (4.139), 1.e.,

dé*  cjaq al, 1 dP T
= —— = — —_— = — 4.149
dx 2 S dx pU. dx pl/. 6% P ( )
Combining Equations (4.148) and (4.149), we have
a* 1u, T 1 Ue (car
- ] ) R e
v cyUe [ K Ue] ( pUJ*) br 2K u, 2
_ o Tw Ly 8 1 Ue o
- pUZcy rU, |77 4k T, OF
=27, =2u., /U,
]- 1 U+ 1 U,

= =205, [1 . ___] wchillls, (4.150)
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Therefore, regrouping terms, we conclude that

1 1 U
wr =3B+ 5 (Br —ar) X (4.151)
Finally, since we seek a solution valid in the limit u, /U, — 0, we have
1 Ur
= —'_2'!61" + O (a) (4.152)

Note that Bush and Fendell (1972) incorrectly argue that w, = o(1) in the limit
ur/Ue — 0. Using arguments similar to those above, Tennekes and Lumley
(1983) and Henkes (1998a) also show that w is given by Equation (4.152).
This reduces the requirement for existence of a similarity solution to only
ar and Br being independent of z. However, we can also show that a.. and
fBr are uniquely related to leading order. To see this, we examine the classical
momentum-integral equation that follows from integrating the mean-momentum
equation across the boundary layer [c.f., Gersten-Schlichting (1999)], viz.,

0_ar
pU2Z dx

where 6 1s momentum thickness and H = §*/0 is the shape factor. In terms of
ar and Br, the momentum-integral equation can be rewritten as

do [1 L (2+H) ,G’T] ds*

Cf d9
4 =—- H
- 2+ H)

: (4.153)

(4.154)

aTd—a“: - H dz

If we evaluate the displacement and momentum thickness using our pertur-
bation solution we find two important facts. First, evaluating the displacement
thickness integral yields an integral constraint on our solution for Uy, Us, etc.
Second, we find to leading order that * and 6 are equal, i.c., the shape factor
approaches 1 as Res» — oo and/or u,/U. — 0. The proof of these facts is
straightforward and thus left for the problems section; the results are:

[ Ui(n)dn =1, f Up(n)dn=0, n>2 (4.155)
0 0

U ] ofw —F ﬁ —3
H~140 (a) as Reg 00, 7 0 (4.156)

The perturbation solution for U; (n) provides sufficient information to determine
the O(u,/U.) term® for H (see problems section). Hence, Equation (4.154)
yields the following relationship between v, and /3.

ar =14+ 38, (4.157)

$The coefficient of this term is generally large, and realistic shape factors (e.g., H =~ 1.3 for a
flat-plate) follow from the perturbation solution.
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Thus, we see that the requirement for existence of a similarity solution to
Equation (4.138) for large Reynolds number is simply that the equilibrium pa-
rameter, 3, be constant. This is a very satisfactory state of affairs because it
is consistent with experimental observations at finite (laboratory-scale) Reynolds
numbers. That is, Clauser found that, outside the viscous sublayer, turbulent
boundary layers assume a self-similar form when the equilibrium parameter is
constant.

Appealing to Equations (4.152) and (4.157), the coefficients appearing in
Equation (4.138) are

Then, the problem we must solve to determine U (n) is:

d |, dU; dU,

Sl B,/ == i ==

p [I\o d‘f?] + (U4 2800 g + 265U =0 (4.159)
dl 1
1l ,_~- a n—0 and U(n)—>0 as n-—o00 (4.160)
dn KN

The integral constraint, Equation (4.155), must also be enforced. The dimension-
less eddy viscosity, Ng(n), depends upon the turbulence model selected. For our
purposes, we will consider three different turbulence models, viz.: the Wilcox
(2006) k-w model [Equations (4.36) — (4.42)]; the Standard k-¢ model [Equa-
tions (4.46) — (4.49)]; and the RNG k-¢ model [Equations (4.46) — (4.48) and
(4.51) - (4.53)].

Making standard boundary-layer approximations for the model equations, we
seek a perturbation solution for k£, w and ¢ of the following form.

2 N

k ~ J%? [Ko(n) + o(1)]

Ur

VBEA

[Wo(n} + o(1)]

W ~

-

(4.161)

uz
e~ T [Bo(n) +o(1)] |
Note that for the k-¢ models, we make the identification 3* = C,,. The precise
form of the equations and auxiliary relations are specific to each model. The
transformed equations are as follows.
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k-w Model:
o d [ Ko dKy dKo '1
de [W dn ] (1 +26r)n dn + 26+ Ko
Vv dU.
v [ ( 7?1) WOKO] =
d [ Ky dW,
— | = 1+ 23 4
Jdn [Wo y } + (142, + 4067 )Wo
f (4.162)
Wy (dUy g Bo 2
* N e il o . ~—-——-W
g [a OKO(dﬂ) B0
Td dKo dWO .
Wo dn dn
e o)
Ny = o W, = W, : Cim S
0 Wo O =S 0> dn )
k-¢ Model:
~1d dKo dKy |
Jkl% |:N0 d ] +(1+26T)n7-+2ﬁTKﬂ
dU; \?
AL [No (d—?;) —Eo} =0
1 d dE dEy
7 [NU‘&?O] (142020 =+ (1+662)Ep (4.163)
T | Caro (T 0, BB
1 elfr d?} KO
K3

We must specify boundary conditions on the dimensionless functions Kp, W,
and Ep both in the freestream and approaching the surface. For nonturbulent
flow in the freestream, we require that the turbulence parameters all vanish as
the similarity variable  — co. However, we also stipulate that these quantities
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approach zero in such a way that the transformed eddy viscosity, /Ny, vanishes.’
Thus, the freestream boundary conditions are

Ko(n) — 0, Wo(n) — 0, Eo(np) =0, Ui(n) -0 as n = o0 (4.164)

Approaching the surface, we must formally match to the law of the wall.
Matching is a bit different for each model but is nevertheless straightforward;
we omit details of the algebra in the interest of brevity. The limiting forms used
for n — 0 are

Ko(n) ~ [L+ kintnn + - -] )

1
Eo(m) ~ s 1+entnn+ -

1 4 (4.165)
Wo(n) ~ a 1+ wynbnn + - -]

1
Ui(n) ~ = [—fnn + ug — wynbnn + - -]

/
The coefficients k1, ui, w; and e; are given below, where for notational consis-
tency, we define |

a* =B =/Cy (4.166)
Also, we write some of the results in terms of o* with the understanding that
co* = 1/oy for the k-¢ models.

All Models: 26,/
il
b= e (4.167)
k-w Model:
wn — [Bo/ (@f3*) + 0do/ (o ™)] [cr*rsz/ (2a*)} .
1 1— fo/ (oB) :
(4.168)
wi — (14 040/ (™)) [0*K?/ (2a*)] k
1 L~ fo/ (af") !
Standard k-¢ Model:
_ (1 + 0*52/“*) Cea —Caq
Y (AN Py R
(4.169)

(1 + O'*}SQ/O;:*) Ce— Ce2
2 (Cel gEe CrEQ)

9The k-w model also has a similarity solution with Wy approaching a nonzero value in the
freestream. It is the solution that normally prevails and is used in Program DEFECT.

k1

€] =
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RNG k-€ Model:
ur = {(0¢/2) [1/0c — 0™ (Cer — Cp)] — [1+ 0" K%/ (2e)] } kr )
e1=(0¢/2)[1/0c — 0" (Cer — CL)] ks
Car= 20?14‘?111;\/0(2?)31 [3 - /\oai -1 1 i%/fg‘?(zjw] )

Additionally, the coefficient ug is determined from the integral constraint for
mass conservation, which is the first of Equations (4.155). Table 4.6 summarizes
the equations for the leading-order terms in the defect-layer solution.

r (4.170)

Table 4.6: Summary of the Defect-Layer Equations.

Mass Conservation (Integral Constraint) Equation (4.155)
Momentum Conservation Equation (4.159)
Velocity Boundary Conditions Equation (4.160)
Turbulence Energy, Specific Dissipation (k-w Model) | Equation (4.162)
Turbulence Energy, Dissipation (k-¢ Model) Equation (4.163)
k, w, € Boundary Conditions for 7 — co Equation (4.164)
k, w, € Boundary Conditions for n — 0 Equation (4.165)

Betore proceeding to discussion of the defect-layer similarity solution, there
are two quantities of interest that follow from the leading-order solution, viz.,
the skin friction, c¢, and Coles’ wake-strength parameter, II. Recall that
from matching defect-layer and sublayer velocity profiles, we deduced Equa-
tion (4.145). Noting that ¢f = 2(u,/U.)?, we conclude that

2
[2 _ (o+ EQ) + LonRes. (4.171)
cr K K

The composite law of the wall, law of the wake profile according to Coles’
meticulous correlation of experimental data [see Coles and Hirst (1969)] is given
by

% = éﬁn (“j’) 22 iEh -Q?Hsilf (323%) (4.172)

The sin? function is purely a curve fit: several other functions have been sug-
gested, including forms that yield 8U/3y = 0 at y = § [which is not the case
for Equation (4.172)]. At the boundary-layer edge, y = &, we have

U . Mo (Er_‘s) Lo+ B 4.173)

T K v K
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Figure 4.18: Comparison of computed and measured defect-layer velocity pro-
files; k-w model; - - - Standard k-€ model, - - -+ RNG k-e¢ model.

Combining Equations (4.145) and (4.173) and canceling the constant C' yields

K 154 K K ®

o 11 1
Lin (“ 5) At D L e (4.174)
Hence, solving for II, we find

1 1 Ugé* v 1 1 urd
II = U0 -+ Efn( ” ) (u,é) = 5o — §€n(UB§*) (4.175)

Finally, defect-layer solutions include sharp (nonphysical) turbulent/nonturbulent
interfaces so that the edge of the defect-layer lies at a finite value 7 = 7., i.c.,

) )
Ne = N UF_J: (4.1'{’6)

Therefore, combining Equations (4.175) and (4.176) leads to the following ex-
pression for the wake-strength parameter.

1
1= E(u{) ~ Inne) (4.177)

Figure 4.18(a) compares the defect-layer solution for the three models with
corresponding experimental data of Wieghardt as tabulated by Coles and Hirst
(1969). The experimental data presented are those at the highest Reynolds num-
ber for which data are reported. This is consistent with the defect-layer solution
that is formally valid for very large Reynolds number. As shown, all three models
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I g

s | o Coles and Hirst - -
e Skare and Krogstad -

-2 0 2 4 6 8 10 12 14 16 18 20 fBr

Figure 4.19: Computed and measured wake-strength parameter; k-w model;
- - - Standard k-¢ model; ---- RNG k-e€ model; — — Baldwin-Barth modei.

predict velocity profiles that differ from measured values by no more than about
three percent of scale. Thus, based on analysis of the constant-pressure defect
layer, there is little difference amongst the three models.

Turning now to the effect of pressure gradient, we consider defect-layer solu-
tions for the equilibrium parameter, 3., ranging from -1/2 to +20, where positive
Br corresponds to an adverse pressure gradient. The choice of this range of 3,
has been dictated by the requirement of the perturbation solution that 3, be con-
stant. This appears to be the maximum range over which experimental data have
been taken with 5, more-or-less constant. Figure 4.18(b) compares computed
velocity profiles with experimental data of Clauser [see Coles and Hirst (1969)]
for Br = 8.7. As shown, the k-w model yields a velocity profile that is within
3% of measurements while the k-¢ models show much larger differences.

Figure 4.19 compares computed wake strength, II, with values inferred by
Coles and Hirst (1969) and Skare and Krogstad (1994) from experimental data.
In addition to results for the two-equation models, the figure includes predicted
11 according to the Baldwin-Barth (1990) one-equation model. Inspection of Fig-
ure 4.19 reveals provocative differences amongst the four models. Most notably,
the k-w model yields wake strengths closest to values inferred from data over
the complete range considered. Consistent with the velocity-profile discrepan-
cies shown in Figure 4.18(b), the k-e¢ models exhibit much larger differences,
with predicted wake strength 30%-40% lower than inferred values when 3, is
as small as two! Also, the Baldwin-Barth model predicts values of II that are
typically 30% higher than measured.
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To appreciate the significance of these results, observe that since we know
Ue/ur = y/2/cs, we can rewrite Equation (4.173) as follows.

. ol
2_1,. (“' 5) +o+ 2 (4.178)

Although this is not an explicit equation for ¢s as a function of II, if we assume
the logarithmic term varies more slowly than the term proportional to II, reducing
the value of II increases the value of ¢, and vice versa. This indeed turns out
to be the case as summarized in the following observations.

1. If a model’s predicted values of II are smaller than measured, its predicted
skin friction is larger than observed. We will see in Sections 4.8 through
4.10 that the k-¢ model consistently predicts values of skin friction that
are significantly larger than measured.

2. Ifthe values of IT are larger than measured, predicted skin friction is smaller
than observed. Inspection of Figure 4.4 confirms that the Baldwin-Barth
model predicts skin friction values that are substantially below correspond-
ing measured values,

3. If a turbulence model predicts values of II similar to measured values
over the entire range of 3;, its skin-friction (and other boundary-layer
property) predictions will be consistent with measurements. We will see
in subsequent sections and chapters that the k-w model accurately predicts
boundary-layer properties, including effects of pressure gradient. Although
we have not shown the results here, the Baldwin-Lomax, Cebeci-Smith,
Johnson-King and Spalart-Allmaras models all predict IT versus ;. curves
that are much closer to the k-w curve than the Baldwin-Barth and k-¢
models. Correspondingly, they all predict boundary-layer features that arc
reasonably close to measurements (cf. Figures 3.17, 3.19 and 4.4).

Thus, we see that using perturbation methods to analyze the defect layer pro-
vides an excellent test of how well any turbulence model will ultimately perform
for attached boundary layers. Although the analysis is confined to equilibrium
boundary layers, in the sense that 8. is constant (and is strictly valid only in the
limit of very large Reynolds number), it is nevertheless an objective and impor-
tant test. This is true because, if the boundary layer is not changing too rapidly,
its properties will be consistent with those of the equilibrium case corresponding
to the local value of 3.
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Table 4.7: Coefficients A, B, L and 11 for B, = 20.

| Model | A | B | L T 1|
k-w (1988a) | 25.89 5.81 -4.42 | 6.88
k-w (2006) 24.87 8.88 -5.58 | 6.54
Standard k-e | 15.67 | 30.51 | -13.02 | 4.85
RNG k-e 1196 | 3607 | -15.30 | 3.82
Measured — -— — 6.80

The explanation of the k-¢ models’ poor performance for adverse pressure
gradient can be developed from inspection of asymptotic solution behavior as
n — 0. For the models analyzed, the velocity behaves as

e—U 1
Uu N—Efnn-{—A—ﬁTannn+~- as 1n—0 4.179)

where Table 4.7 summarizes the constants A and B, defined by

St 11 (4.180)

4 Brk

Il
If

20 and B
K

Note that, while the coefficient A is determined as part of the solution (from
the integral constraint that mass be conserved), the coefficient B follows directly
from the limiting form of the solution as 7 — 0. As seen from Table 47, B is
largest for the RNG k-¢ model and is smallest for the Wilcox (1988a) k-w model,
which has no cross diffusion. Because the coefficient of its cross diffusion term
is not very large, B is relatively small for the Wilcox (2006) k-w model. The
presence of the nénn term gives rise to an inflection in the velocity profile as
n — 0 that is most pronounced for the k-¢ models.

In terms of turbulence properties, the turbulence length scale, ¢, behaves
according to

0~ [3*1/4!‘57?[1 + BrLntnn + - - as 17 —0 (4.181)

Table 4.7 also includes the coefficient L for each model. Again, we see that the
contribution of the n¢nn term is much larger for the k-¢ models than it is for
the k-w models. Thus, for adverse pressure gradient, the k-¢ models’ turbulence
length scales tend to be too large in the near-wall region. Note, of course, that
this shortcoming is not evident in the constant-pressure case, which has 3, = 0.

The manner in which the k-w model achieves smaller values of ¢ than the
k-e models can be seen by changing dependent variables. That is, starting with
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the k-w formulation and defining ¢ = B3*wk, we can deduce the following in-
compressible equation for ¢ implied by the k-w model.!°

Oe Oe AU\ 2 €2 o de
U— = o - o *)— . TR
8$+V8y (1—I—a)k(ay) (1+3/ﬁ)k+ay [cn/ ay]
Ok d(e/k)
e 4.182
2JVT5y 57 ( )

All terms except the last on the right-hand side of Equation (4.182) are
identical in form to those of the Standard k-e model [see Equation (4.48)]. The
cross-diffusion term, which is discussed in detail in Subsection 4.5.4, is negligi-
bly small as 7 — O for constant-pressure boundary layers because & — constant
as n — 0. However, 8k/8y is nonvanishing when 8, # 0 and 8(¢/k)/dy
generally is quite large as n — 0. The net effect of this additional term is to
suppress the rate of increase of ¢ close to the surface.

We can draw an important conclusion from these observations about cross
diffusion. Specifically, with a change of dependent variables to w from the second
parameter being used (e.g., €, ¢, 7), any two-equation model can be rewritten as
a k-w model. In general, the implied equation for w includes a cross-diffusion
term. Since excessive amounts of cross diffusion have such an undesirable effect
on boundary-layer predictions, additional corrections to the model will be needed
to counter the undesirable effects of the term. Rodi and Scheuerer (1986), Yap
(1987) and Henkes (1998b), for example, have proposed corrections to the k-¢
model which implicitly counter the effects of cross diffusion (relative to the k-w
model) with varying degrees of success.

As with free shear flows, the freestream value of w has an effect on k-w
model defect-layer solutions when the freestream eddy viscosity is negligibly
small. However, the sensitivity is far less significant than it is for free shear
cases (see Subsection 4.5.3), even when the k-w model has no cross diffusion
term. The freestream value of ¢ has virtually no effect for the k-e model.

Computations done using Program DEFECT (see Appendix C) demonstrate
the sensitivity. All computations have been done with 8; = 0 and have a
freestream eddy viscosity of N(n.) = 107%. Self-similar solutions exist for
Wo(ne) = 0 and for Wo(n.) = /B*/B, = 4.24, which is a relatively large
value. Regarding this as the upper bound on Wy(7.), computations have been
performed to determine the sensitivity of skin friction, cy, to the freestream value
of WQ.

Figure 4.20 shows the variation of ¢; with Wy (.). The quantity cs, denotes
the value of ¢y for zero freestream conditions. As shown, the effect is small.
For the largest value of Wy (ne), the change in ¢y is less than 3%. Note that, in

'©This equation was derived assuming ¢ = o* and o4 = 0 to simplify the algebra. With o # *
there is an additional benign diffusion term that is of no consequence to the present discussion.
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Figure 4.20: Effect of the freestream value of w on k-w model skin friction.

typical numerical computations, large values of w diffuse from the wall toward
the boundary-layer edge, so that Wy (7,) normally tends toward \/B*/4,, which
corresponds to Udw/dz = —f,w? in the freestream.

Equation (4.168) shows that the coefficient B = u;/(8,.) is proportional to
a”, so that smaller values of o* enhance the model’s predictions for boundary
layers with variable pressure. The computed variation of IT with 3, (Figure 4.19)
closely matches experimental results when o* = 3/5 and ¢4, = 1/8. Thus, our
analysis of free shear flows and of the defect layer provides further credence to
the values of these coefficients that have been chosen for the k-w model.

However, we have implicitly assumed that the appropriate value for o is
1/2 and promised to justify this choice later. In Subsection 4.6.3, we will find
that using ¢ = 1/2 yields an excellent solution in the viscous sublayer, almost
independent of the values of o* and o 4,.

4.6.3 The Viscous Sublayer

In order to facilitate integration of the model equations through the viscous sub-
layer, we must, at a minimum, have molecular diffusion terms in the equations of
motion. Potentially, we might also have to allow the various closure coefficients
to be functions of viscosity (i.e., turbulence Reynolds number) as well. This
should come as no surprise since even the mixing-length model requires the Van
Driest damping factor and one-equation models need similar viscous damping
[Wolfshtein (1967), Baldwin and Barth (1990), Spalart and Allmaras (1992)].
In this section, we use perturbation methods to analyze viscous-sublayer structure
predicted by several two-equation models. As we will see, with the exception
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of some k-w models, virtually all two-equation models require Reynolds-number
dependent corrections in order to yield a realistic sublayer solution.

We have already derived the sublayer solution in Subsection 4.6.1 when we
discussed the log layer. Recapping the highlights of the expansion procedure,
the velocity is given by an expansion of the form

Ulz,y) ~ ur[do(y™) + Reg a1 (€, y+) + o(Rez.')] (4.183)

To leading order, the convective terms and pressure gradient are negligible. Thus,
for example, the leading-order equations for the k-w model expressed in terms
of dimensional quantities are given by

U
d [ k\ dk dU \ 2
wh 2V 22y (=) = Bwk=0
dy (U+J w)dy}Jruq(dy) pre

d [(, . E\dw] _(dU\® cadkdo o o o 4189
dy | w/ dy dy w dy dy e

v ——FE @w = max{ w, Cy M

T—st - s ilim \/B;

F

Because the Reynolds shear stress is constant, the viscous sublayer is often
referred to as the constant-stress layer. Five boundary conditions are needed
for this fifth-order system, two of which follow from matching to the law of the
wall as y* — o0, viz,,

2
u Ur
k— —= and w —

VB VB* ky

where ¥yt = u,y/v. Two more boundary conditions follow from no slip at the
surface, which implies that I/ and k£ vanish at y = 0. Thus,

as y = — oo (4.185)

U=k=0 at gy =0 (4.186)

The final condition follows from examination of the differential equations
for k and w approaching the surface. The k-w model possesses two kinds of
solutions. The first type of solution has a finite value of w at the surface. This
fact was first observed by Saffman (1970) who speculated that the constant in
the law of the wall, C, would vary with the surface value of w. This feature is
unique to k-w and k-w? models and we will explore it in detail in Section 4.7.
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The second type of solution is common to all two-equation models and this is the
one we will focus on now. Examination of the differential equations approaching
y = 0 shows that for all two-equation models,

k~y" and B*y’w/v ~ constant  as y—0 (4.187)

Table 4.8 lists the values of n and the constant for several models. As
shown, none of the models predicts the exact theoretical value of 2 for both n
and B*y*w/v. This can only be accomplished with additional modification of
the model equations.

Table 4.8: Sublayer Behavior Without Viscous Damping.

[ Model | Type [ € [ n | 87y w/v |
Wilcox-Rubesin (1980) kew? 7.1 4.00 12.00
Saffman (1970) k-2 60 | 3.7-4.0 12.00
Launder-Spalding (1972) | k-w? 5.7 3.79 12.00
Wilcox (2006) K-w 5.5 3.31 7.63
Wilcox (1988a) k-w 5.1 3.23 7.20
Kolmogorov (1942) k-w 31 3.62 7.20
Launder-Sharma (1974) k-e 2.2 1.39 0.53
Speziale (1990) k-1 -2.2 1.39 0.53
Exact/Measured 5.0-5.5 2.00 2.00

The exact values follow from expanding the fluctuating velocity in Taylor
series near a solid boundary. That is, we know that the fluctuating velocity
satisfies the no-slip boundary condition and also satisfies conservation of mass
(see Section 2.3). Consequently, the three velocity components must behave as
follows.

oo~ Az, ztly + O(?)
v\~ Bz, z,t)y? + OP) as y—0 (4.188)
w o~ Clz,z,t)y + Oy?)

Hence, the turbulence kinetic energy and dissipation are given by

1 ——0 ;
koo o (2109 +0(°)  and  e~v (BBHCT)+0(y) (4.189)
Assuming that € = §*wk, Equation (4.189) tells us that

k~y® and f'%w/v~2 as y—0 (4.190)

Thus, using the asymptotic behavior of w for y — 0 appropriate to each
model as the fifth boundary condition, we can solve the sublayer equations (see
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Figure 4.21: Computed and measured sublayer velocity: o Laufer; e Andersen
et al.; o Wieghardt; —— k-w model.

Subsection 7.2.1 for an explanation of how to handle the singular behavior of w
numerically). One of the most interesting features of the solution is the constant
in the law of the wall, C, that is evaluated from the following limit.

C = lim [U““ — —1~zany+] (4.191)
[

yt—oc

In practice, integrating from y* = 0 to y* = 500 is sufficient for numerical
solution of the sublayer equations. Program SUBLAY (see Appendix C) can be
used to solve the sublayer equations for the k-w model.

Table 4.8 also lists the computed value of C' for the various two-equation
models. As shown, the Spalding (1972) k-w? model, the Wilcox (1988a) k-w
model and the k-w model defined in Equations (4.36) — (4.42) are sufficiently
close to the standard value of 5.0 to be used with no additional viscous modifi-
cations. The Standard k-e model and the Speziale et al. k-7 model are farthest
from the generally accepted vaiue for C.

Figure 4.21 compares k-w model velocity profiles with corresponding mea-
surements of Laufer (1952), Andersen, Kays and Moffat (1972), and Wieghardt
[as tabulated by Coles and Hirst (1969)]. As shown, computed velocities gener-
ally fall within experimental data scatter for all values of y* considered.

Figure 4.22 compares computed production and dissipation with Laufer’s
(1952) near-wall pipe-flow measurements. Again, predictions are close to mea-
surements. However, note that Laufer’s dissipation data are incorrect for values
of y* less than 10, a point we will discuss further in Subsection 4.8.1.
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Figure 4.22: Computed and measured production and dissipation: o Laufer;

— k-w model.

The value of the constant C' in the law of the wall is remarkably insensitive
to the value of o*. With all other closure coefficients as specified in Equa-
tions (4.39) — (4.42), computations show that as o* increases from 0.5 to 1.0,
the value of C decreases by 0.5%. There is no sensitivity to the cross-diffusion

coefficient because dk/dydw/dy < 0, which means o4 = 0 in the sublayer.

The value chosen for o does affect the value of C. Figure 4.23 shows the
functional dependence. Computations have been done with the value of the
Kérman constant, «, held invariant by setting o = §,/8* — ox2/\/B*. This

justifies selecting ¢ = 1/2 for the k-w model.

C 6.0 T I I

5.5

5.0

4.0 1 1
0.50 0.55 0.60 0.65 0.70
o

Figure 4.23: Variation of C with closure coefficient o.
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This concludes our perturbation analysis of the turbulent boundary layer. As
we have seen, using perturbation analysis, we have been able to dissect model-
predicted structure of the defect layer, log layer and sublayer, never having to
solve more than an ordinary differential equation. This is a great advantage
in testing a turbulence model in light of the ease and accuracy with which
ordinary differential equations can be solved. The equations are not trivial to
solve however since we are dealing with two-point boundary-value problems,
and the resulting systems of equations are of sixth order for the defect layer
and fifth order for the sublayer. However, this is far casier to handle than the
partial differential equations we started with, and parametric studies (e.g., varying
the equilibrium parameter, 3r) are much simpler. As a final comment, results
obtained in this section should make the following statement obvious.

Given the demonstrated power and utility of perturbation analysis
in analyzing the turbulent boundary layer; this type of analysis can,
and should, be used in developing ail turbulence models. Failure
to use these methods is the primary reason so many turbulence
models have been devised that fail to accurately predict properties
of incompressible, equilibrium boundary layers.

4.7 Surface Boundary Conditions

In order to apply a two-equation turbulence model to wall-bounded flows, we
must specify boundary conditions appropriate to a solid boundary for the velocity
and the two turbulence parameters. As shown in the preceding section, many
two-equation models fail to predict a satisfactory value of the constant C in the
law of the wall (see Table 4.8). Consequently, for these models, applying the
no-slip boundary condition and integrating through the viscous sublayer yields
unsatisfactory results.

One approach we can take to remove this deficiency is to introduce viscous
damping factors analogous to the Van Driest correction for the mixing-length
model. Since introduction of damping factors accomplishes much more than
improving predictions of the velocity profile in the sublayer, we defer detailed
discussion of such modifications to Section 4.9. The k-w model is, in fact,
unique because viscous modifications to its closure coefficients are not needed
to achieve a satisfactory value of C.

An alternative approach is to circumvent the inability to predict a satisfactory
log-layer solution by simply matching to the law of the wall using a suitable value
for C. This is what we did in analyzing the defect layer, and the procedure is
equally valid for general wall-bounded flows.
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4.7.1 Wall Functions

Historically, researchers implementing this matching procedure have referred to
the functional forms used in the limit y — 0 as wall functions. This procedure
uses the law of the wall as the constitutive relation between velocity and surface
shear stress. That is, in terms of the velocity at the mesh point closest to the
surface (the “matching point™), we can regard the law of the wall, viz.,

B EP
U=u, [Eé’n( z ) +C] (4.192)

as a transcendental equation for the friction velocity and, hence, the shear stress.
Once the friction velocity is known, we use Equations (4.127) for the k-w model
or Equations (4.132) for the k-¢ model to define the values of k and w or € at
the grid points closest to the surface. Because w and € are odd functions of u.,
and both quantities are positive definite, care must be taken for separated flows.
We can either use the absolute value of u, or combine the equations for k and
w or k and e so that the wall functions for k, w and ¢ become:

52 L2 L E3/2
k = T = —- = *5/4'-—— .
/6* ’ W 5*1/4Ry, 2 ’B Ky (4 193)

The wall-function approach is not entirely satisfactory for several reasons.
Most importantly, numerical solutions generally are sensitive to the point above
the surface where the wall functions are used, i.c., the point where the matching
occurs (see Subsection 7.2.1 for an in-depth discussion of this problem). Fur-
thermore, the law of the wall doesn’t always hold for flow near solid boundaries,
most notably for separated flows.

There is a more subtle danger attending the use of wall functions. Specifically,
when poor results are obtained with a two-equation model, researchers sometimes
mistakenly blame their difficulties on the use of non-optimum wall functions.
This assessment is too often made when the wall functions are not the real
cause of the problem. For examplie, the k-¢ model just doesn’t perform well for
boundary layers with adverse pressure gradient, even when accurately matched
to the log law. Many articles have appeared claiming that discrepancies between
the k-¢ model’s predicted skin friction and corresponding measurements for such
flows are caused by the wall functions. This incorrectly assumes that the surface
shear is a localized force that depends only upon sublayer structure. As shown
in the defect-layer solution of the preceding section, no viscous modification
is likely to remove the curious inflection {Figure 4.18(b)] in the k-¢ model’s
velocity profile unless viscous effects (unrealistically) penetrate far above the
viscous sublayer. We must not lose sight of the fact that the momentum flux
through a boundary layer affects the surface shear stress and vice versa [see
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Equation (4.153)]. Hence, inaccurate skin friction predictions can be caused by
inaccuracies in the velocity profile anywhere in the layer.

Wilcox (1989) demonstrates that pressure gradient must be included in or-
der to achieve solutions independent of the matching point. Retaining pressure
gradient in the log-layer equations [i.e., retaining the term 3, /Res. in Equa-
tion (4.119)], then the asymptotic behavior for the k-w model [as defined in
Equations (4.36) — (4.42)] approaching the surface is given by the following
equations:

U=u, [_l_gn (ufy) 10 —1 13 P O(P+)2j[
K v v
u? ULy
= St 1+ 1162 p+ 4 o(Pt 2] > 4.194)
k VQF.[—FIIG Pt 4 O(PT) (
N _ UrY p+ +2
w_\/B;Hy[l 0.30=2p +O(P)] ,
where P is the dimensionless pressure-gradient parameter defined by
: dP
pr= % 4.195
pu? dz (#199)

The expansions in Equation (4.194) have been derived assuming that P+t is a
small parameter.

Two recent efforts aimed at developing wall functions have built upon the
early work of Spalding (1961). Shih et al. (1999) have developed wall functions
that explicitly account for effects of pressure gradient. Nichols and Nelson (2004)
have developed wall functions that include effects of both pressure gradient and
surface heat transfer. The Nichols-Nelson wall functions are particularly effective
and provide more-or-less grid independent solutions using the Spalart-Allmaras
one-equation model and the k-w model for both attached and separated flows.

4.7.2 Surface Roughness

As noted in the preceding section, a key advantage of the k-w? and k-w for-
mulations over the k-¢ formulation is the fact that w-oriented equations possess
solutions in which the value of w may be arbitrarily specified at the surface.
This is an advantage because it provides a natural way to incorporate effects
of surface roughness through surface boundary conditions. This feature of the
equations was originally recognized by Saffman (1970). If we write the surface
boundary condition on w as

S, at y=0 (4.196)
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Figure 4.24: Variation of the constant in the law of the wall, C, with the surface
value of the specific dissipation rate.

we can generate sublayer solutions for arbitrary S, including the limiting cases
Sr — 0 and Sr — oco. Figure 4.24 shows the computed value of C for a wide
range of values of Sy. As shown, in the limit S, — oo, C tends to 5.47. In the
limit S — 0, an excellent correlation of the numerical predictions is given by

C — 8.0+ -i-en(sﬁ/loo) as  Sr—0 (4.197)

Correlation of measurements [see Gersten-Schlichting (1999)] indicate that
for flow over very rough surfaces (see Figure 1.8),

1
C — 80+ ;m (1/kF), kI =u ks/v (4.198)

where k; is the average height of sand-grain roughness elements. (Thus, if we

make the correlation
Se=100/k},  Ekf>1 (4.199)

then Equations (4.197) and (4.198) are identical. Figure 4.25 compares computed
velocity profiles with the correlation of rough-wall data, which is obtained by
using Equation (4.198) in the law of the wall, viz.,

Uz éfn (y/ks) +8.0, K=041 (4.200)

for three values of £}. Computed velocities are very close to the correlation. The
most remarkable fact about this correlation is that Equation (4.200) is the form
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Figure 4.25: Comparison of computed sublayer velocity profiles for “completely
rough” surfaces with correlation of measurements: o computed, ki = 340;
o computed, k} = 190; e computed, k} = 42.5.

the law of the wall assumes for flow over “completely-rough” surfaces [recall
Equation (1.31)], including the value of the additive constant.

By making a qualitative argument based on flow over a wavy wall, Wilcox
and Chambers (1975) [see problems section] show that for small roughness
heights, we should expect to have

Sa~1/kF)? as kFr—o0 (4.201)

Comparison with Nikuradse’s data (see Figure 1.8) permits us to infer the value
of S corresponding to a given value of k. Figure 4.26 shows the results for the
k-w model. The following correlation between Sy and kJ reproduces measured
effects of sand-grain roughness for values of &} up to about 400.

(/200> |
(k-i) ’ k<5
S, = { (4.202)
100 200\%  100| o .+
\H+|:(kj) --k;_]tf: £ o k:>5

As a final comment, the solution for £k} - 0 is identical to the sublayer
solution discussed in Subsection 4.6.3 [see Equation (4.187)]. The analysis
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Figure 4.26: Correlation of Sg with dimensioniess sand-grain roughness height,
kf; o Inferred from Nikuradse data; —— Equation (4.202).

of this section shows that the singular case corresponds to the perfectly-smooth
surface. In practice, Equation (4.202) should be used rather than Equation (4.187)
even if a perfectly-smooth surface is desired. Specifically, we can combine
Equations (4.196) and the first of Equations (4.202) to arrive at the slightly-
rough-surface boundary condition on w, viz.,

40000v,,
W= ——

i3 y=0 (4.203)

It is important to select a small enough value of k; to insure that kF < 5, corre-
sponding to a “hydraulically-smooth surface” as defined by Gersten-Schlichting
(1999). If too large a value is selected, the skin friction values will be larger
than smooth-wall values. The advantage in using either Equation (4.202) or
Equation (4.203) is obvious for several reasons.

e Local geometry (e.g., distance normal to the surface) does not appear so it
can be applied even in three-dimensional geometries.

e k; need only be small enough to have a hydraulically smooth surface, i.c.,
urks/v < 5. Resulting surface values of w are rarely ever large enough
to cause numerical error provided a sensible finite-difference grid is used
{see Subsection 7.2.1).

e Experience shows that Equation (4.202) works well for separated flows.
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4.7.3 Surface Mass Injection

For boundary layers with surface mass injection, the introduction of an ad-
ditional velocity scale (v,, = area-averaged normal flow velocity through the
porous surface) suggests that the scaling for w at the surface may differ from
Equation (4.196). Andersen, Kays and Moffat (1972) provide further evidence
that the specific-dissipation-rate boundary condition must be revised when mass
injection is present by showing, from correlation of their experimental data, that
both x and C are functions of v} = v,,/u,. Because rough-surface computa-
tions show that the value of C' is strongly affected by the surface value of the
specific dissipation rate, this suggests that the surface value of w will depend in
some manner upon v,,. Following Wilcox and Traci (1976), examination of the
limiting form of the model equations for y* — oo (i.e., in the log layer) shows
immediately that the effective Karmén “constant”, «,, varies with v} according

to
K

R - J, 4.204
T 1Y 2 (4.209
where = is given by
1 30 -2 1
e (0= B2 + —fnyT = 3.36 + 0.63¢ny™ (4.205)
2 20k 4x

Note that C, = 5.47 is the k-w model-predicted constant in the law of the wall
for a perfectly-smooth wall with no surface mass transfer.!!

The variation of k., predicted in Equations (4.204) and (4.205) is consis-
tent with the Andersen et al. data. Including appropriate convective terms in
Equations (4.184), we can use Program SUBLAY (see Appendix C) to perform
sublayer computations for the cases experimentally documented by Andersen et
al. In each case, the surface value of w is given by

U2

w = T}SB at y=0 (4.206)

Foliowing Wilcox (1988a), we vary the value of Sy to achieve optimum agree-
ment between measured and computed velocities. The correlation between Sz
and v} is given in analytical form as

25

Sp = —— 0
& v$(1+5v$)

(4.207)

Figure 4.27 compares measured velocities with values computed using Equa-
tions (4.206) and (4.207).

UFor boundary layers with suction, i.e., for vy, < 0, the k-w model provides close agreement
with measured velocity profiles treating the wall as being smooth. That is, w should be given either
by Equation (4.187) or by Equation (4.203) with k" < 5.
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Figure 4.27: Sublayer velocity profiles for boundary layers with surface mass
infection; Wilcox (2006) k-w model; o > o A e Andersen et al.

4.8 Application to Wall-Bounded Flows

Using the surface boundary conditions devised in Section 4.7, we can now apply
two-equation turbulence models to wall-bounded flows. Because of their relative
simplicity, we consider pipe and channel flow first using the k-w model. Then,
we will consider several incompressible boundary-layer applications. We exercise
the k-w model and the Standard k-e model in the boundary-layer applications.

4.8.1 Channel and Pipe Flow

Figures 4.28 and 4.29 compare computed (using Program PIPE — see Ap-
pendix C) and measured channel and pipe flow properties, respectively. Six
different comparisons are shown in each figure, including mean velocity, skin
friction, Reynolds shear stress, turbulence kinetic energy, turbulence-energy pro-
duction and dissipation rate,

Figure 4.28 compares k-w model channel-flow predictions with the Direct
Numerical Simulation (DNS) data of Mansour, Kim and Moin (1988). Reynolds
number based on channel height and average velocity is 13750. Velocity profiles
and Reynolds shear stress profiles differ by less than 3%. Computed skin friction
differs from Halleen and Johnston’s (1967) correlation [Equation (3.139)] by
less than about 2% except at the lowest Reynolds number shown. Although
the model fails to predict the peak value of & near the channel wall, computed
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values of & differ from DNS values by less than 5% over 80% of the channel.
Despite the fact that the model is not asymptotically consistent approaching
the surface (Subsection 4.9.1), even dimensionless turbulence-energy production,
Pr = vy (8U/8y)/ut, and dissipation, et = ve/u?, nearly duplicatc DNS
results except very close to the surface (see discussion of pipe flow below). On
balance, k-w results are a bit closer to DNS results than either the Cebeci-Smith
or Baldwin-Lomax models (Subsection 3.5.1).
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Figure 4.28: Comparison of computed and measured channel-flow properties,
Rey = 13750. —— Wilcox (2006} k-w model;, o Mansour et al. (DNS),
o Halleen-Johnston correlation.

Figure 4.29 compares k-w model pipe-flow results with Laufer’s (1 952) mea-
surements at a Reynolds number based on pipe diameter and average velocity of
40000. As shown, computed and measured velocity and Reynolds shear stress
profiles differ by less than 6%. As with channel flow, computed and measured
turbulence kinetic energy differ by about 4% except close to the surface where the
sharp peak occurs. Computed production and dissipation differ from measured
values by less than 5%. However, dissipation is really nonzero at the surface (se€
the DNS results in Figure 4.28), wherefore Laufer’s dissipation measurements
are certainly incorrect as y= — 0. Hence, the model is matching erroneous data!
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Figure 4.29: Comparison of computed and measured pipe-flow properties,
Rep = 40000. —— Wilcox (2006) k-w model, o Laufer; u Prandi] correlation.

Computed skin friction is within 4% of Prandt!’s universal law of friction [Equa-
tion (3.140)]. Overall, velocity and Reynolds-stress predictions are as close to
measurements as those of the Cebeci-Smith and Baldwin-Lomax models.

It is interesting, and perhaps illuminating, that the most important flow prop-
erties are accurately predicted even though the sharp peak in turbulence energy is
underestimated by 40% and 25%, respectively, for channel and pipe flow. That
is, for engineering applications, the most important quantity is the skin friction.
The next most important quantity typically is the velocity profile. Only for spe-
cialized applications is a subtle feature such as the peak value of k important.
Thus, we see that even though the k-w model fails to predict this subtle feature,
this is apparently of little consequence for most engineering applications.

4.8.2 Boundary Layers

We turn now to application of the k-w and k-e model equations to the same 16 in-
compressible boundary layers considered for algebraic (Figure 3.17), 1/2-equation
(Figure 3.19) and one-equation models (Figure 4.4). All of the k-w model results
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use the surface boundary conditions described in Subsection 4.7.2. The k-¢ model
computations were done using the Launder-Sharma (1974) low-Reynolds-number
version subject to appropriate surface boundary conditions [see Subsection 4.9.1,
Equations (4.211) — (4.215), (4.217) and (4.221)]. All computations have been
done with Program EDDYBL (see Appendix C).

Favorable Pressure Gradient. The top row of graphs in Figure 4.30 compares
computed and measured ¢y for the constant-pressure boundary layer (Flow 1400)
and three boundary layers with favorable pressure gradient (Flows 1300, 2700
and 6300). For the k-w model, computed c¢ virtually duplicates measurements
for all four cases — differences between computed and measured ¢y are no more
than 4%. The k-e predictions are also quite close to measurements for Flows
1400 and 6300. However, k-¢ skin friction is 10% below measured values for
Flows 1300 and 2700. Thus, as no great surprise, the k-w and k-¢ models are
quite accurate for the flat-plate boundary layer and boundary layers with favorable
pressure gradient. The average difference between computed and measured cy
at the final station is 3% and 7% for the k-w and k-¢ models, respectively.

Mild Adverse Pressure Gradient. The second row of graphs in Figure 4.30
compares computed and measured c; for boundary layers with “mild” adverse
pressure gradient. These flows (1100, 2100, 2500 and 4800) correspond to
values of the equilibrium parameter, (3, less than about 2. The k-w predictions
are again very close to measurements, even for Flow 4800, which is approaching
separation. By contrast, the k-¢ model’s skin friction is close to corresponding
measured values only for Flow 2100. The model’s predicted skin friction is
almost three times the measured value for Flow 4800, and the average difference
between computed and measured c¢; for the four cases 1s 28%.

Moderate Adverse Pressure Gradient. Turning to “moderate” adverse Vp
(8r between about 2 and 4), we focus on the next to bottom row of graphs in
Figure 4.30, i.c., Flows 2400, 2600, 3300 and 4500. As shown, there is no
significant increase in differences between computed and measured cs for the
k-w model even for the nearly-separated Flow 4500, with the average difference
being 9%. However, the k-¢ model’s predictions show even greater deviations
from measured cs, with the computed value being nearly 4 times the measured
value for Flow 4500. The average difference at the end of each computation
is 40%. Flow 3300, Bradshaw (1969) Flow C, was one of the most difficult
cases considered in Stanford Olympics I. Throughout the flow, the k-w model’s
¢y is within 5% of measurements, while the k-e model predicts a final value of
cy that exceeds the measured value by 29%. The difference can be reduced to
about 20% using wall functions [Chambers and Wilcox (1977)]. Because the
equilibrium parameter 3r = 2 for this flow, the poor results for the k- model
are unsurprising.
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Strong Adverse Pressure Gradient. The bottom-row graphs in Figure 4.30
correspond to “strong” adverse pressure gradient, which corresponds to Gy > 4.
Inspection of Figure 4.19 suggests that the k-w model should be expected to
continue predicting boundary-layer properties close to measurements, while dif-
ferences between k-e predictions and measurements should continue to increase.
This is indeed the case. For example, Flow 0141 has increasingly adverse pres-
sure gradient, the experimental data being those of Samuel and Joubert [see Kline
et al. (1981)]. For the k-w model, computed and measured skin friction differ by
less than 5% of scale. Since ;. exceeds 9 toward the end of the computation, the
poor performance of the k-¢ model (computed c; exceeds measured values by
as much as 47%) is consistent with the defect-layer analysis of Subsection 4.6.2.
While the k-w model’s skin friction is 28% higher than measured for the Strat-
ford (1959) “incipient-separation” flow, this prediction is closer to the measured
cys than any of the algebraic, 1/2-equation and one-equation models considered
in Chapters 3 and 4. The k-e¢ model’s ¢ is 4 times the measured value.

Table 4.9 summarizes differences between computed and measured cy at the
final station for the various pressure gradients. The overall average difference
for all 16 cases is 6% for the k-w model and 37% for the Standard k-¢ model.

Table 4.9: Differences Between Computed and Measured Skin Friction.

| Pressure Gradient | Flows [ kw | k-e |
Favorable 1400, 1300, 2700, 6300 3% 7%
Mild Adverse 1100, 2100, 2500, 4800 5% 28%

Moderate Adverse | 2400, 2600, 3300, 4500 | 9% | 40%
Strong Adverse 0141, 1200, 4400, 5300 | 8% | 72%
All - 6% | 37%

4.9 Low-Reynolds-Number Effects

Thus far, the turbulence models we have considered are restricted to high-
Reynolds number applications. Even in the case of the k-w model, while we
have been able to obtain acceptably accurate results by integrating through the
viscous sublayer, we have paid no attention to low-Reynolds-number effects. For
example, the model fails to predict the sharp peak in turbulence kinetic energy
close to the surface for pipe and channel flow (see Figures 4.28 and 4.29). Most
two-eqquation models fail to predict a realistic value of the additive constant, C,
in the law of the wall, and require viscous damping in order to do so. Finally,
there are applications for which viscous effects must be accurately represented.
This section will discuss commonly used low-Reynolds-number corrections.
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4.9.1 Asymptotic Consistency

In formulating viscous corrections for two-equation models, we can obtain some
guidance from looking at the limiting behavior of the fluctuating velocities ap-
proaching a solid boundary. That is, we assume standard Taylor-series expansions
for each of the fluctuating velocities and substitute into the exact equations of
motion, viz., the instantaneous continuity and Navier-Stokes equations. We did
this in Subsection 4.6.3 when we were formulating surface boundary conditions
for the viscous-sublayer perturbation solution. Thus, we again begin by assuming

' o~ folm,zt)y 4+ O(y?)
v~ fylm, 2 )y O(y®) as  y—0 (4.208)
w' o~ f(z,2,t)y + O(y?)

where f:(z,z2,t), fy(z,2,t) and f,(z, z,t) must have zero time average and
satisfy the equations of motion. Note that the no-slip surface boundary con-
dition dictates the fact that u’ _must go to zero as y — 0. Since we expect
Navier-Stokes solutions to be analytic everywhere, we conclude that the fluc-
tuating velocity components »’ and w’ vary linearly with y. Also, substituting
Equations (4.208) into the continuity equation shows that v/ varies quadratically
with y. While we don’t know the precise values of f,, f, and f, without solving
the complete Navier-Stokes equation, we can still use the exact asymptotic vari-
ations of ’, v" and w’ with y to deduce the limiting behavior of time-averaged
properties approaching the surface. For example, the turbulence kinetic energy
and dissipation are

k ~ %(fﬁ +2W+0G*)  and e~ (FZ1F2) + O(y)  (4.209)

Also, the Reynolds shear stress is given by
Tay ~ —foly ¥* + O(y*) (4.210)

A model that duplicates the power-law forms of %, ¢ and Tzy given in Equa-
tions (4.209) and (4.210) is said to be asymptotically consistent with the near-
wall behavior of the exact equations of motion.

Many researchers have attempted to devise viscous corrections for k-¢ and
other two-equation models to permit their integration through the viscous sub-
layer. All have achieved some degree of asymptotic consistency. Jones and
Launder (1972) were the first to propose viscous modifications for the k-¢ model.
Other proposals have been made by Launder and Sharma (1974), Hoffmann
(1975), Reynolds (1976), Hassid and Poreh (1978), Lam and Bremhorst (1981),
Dutoya and Michard (1981), Chien ( 1982), Myong and Kasagi (1990), Speziale,
Abid and Anderson (1990), Shih and Hsu (1991), Durbin (1991), Zhang, So,
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Speziale and Lai (1993), Yang and Shih (1993), Fan, Lakshminarayana and Bar-
nett (1993), Hwang and Lin (1998) and Rahman and Siikonen (2002). For steady,
incompressible boundary layers, most of these models can be written compactly
as follows.

ok Ok A 8 ok

i LA bt P W — 4211

UE?:L‘ +V8y yT(@y) e-l—ay (I/+VT/0’k)ay] ( )
o 0F e (oU\’ & o ad

Uss +Vg!;—cclflk‘vr (*55) - ezfzg“i‘E*i‘a; [(V"FVT/Ue)a—y]

(4.212)
where the dissipation, e, is related to the quantity € by

TP (4.213)

The quantity €, is the value of € at y = 0, and is defined differently for each
model. The eddy viscosity is defined as

vr = Cyfuk? /€ (4.214)

Equations (4.211) — (4.214) contain five empirical damping functions, fi,
f2, fu, €0 and E. These functions depend upon one or more of the following
three dimensionless parameters.

L2 p1/2 .
ReT:——‘, Ry: Yy y—{—:uy

~ ¥

eV 124 4

The models devised by Jones and Launder (1972), Launder and Sharma
(1974), Lam and Bremhorst (1981), and Chien (1982) exemplify most of the
features incorporated in k-e¢ model viscous damping functions. The damping
functions and closure coefficients for these four low-Reynolds-number k-¢ models
are as follows.

(4.215)

Jones-Launder Model

fu= o—2:5/(1+Rer/50) \
fi=1 .
foime 0.364R6T

2
Ep = 21 (M) L (4.216)

Ay
92U\ ?

E =2vv, (83}2
C. =155, Ce=200, C,=0.09 o,=10, oc=13)
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Launder-Sharma Model

_fp, — ¢—3-4/(14+Rer /50)? )
fi=1 .
fa=1-0.3e fer
2
—
€o =2 (%ﬁ“) S (4.217)
82U\ ?
=i (3—3,2—)
Cﬂ e 1.44, 052 = 1.92, Ciu e 0.09, T = 1.0, T = 1.3 y

Lam-Bremhorst Model

fu=(1—e 0018582 (1 | 90 5/Re.) )
fr=1+(0.05/£,)°
. _ p—He
=l = | b (4.218)
i
E=0
Ca =144, Cop=192, C, =009, o0;5=1.0, o.=13
Chien Model
f = . 8—0‘01153;* )
=
fi=1
f2 =1 — 0.22¢(Rer/6)?
€0 = 2w o @29
y?
= —21/%6_3"+/2
Ca =135 Co=180, C,=009, ox=10, o =13 |

By examining the limiting behavior of each of these models close to a solid
boundary where y = 0, it is easy to demonstrate that, consistent with Equa-
tion (4.209), all four models guarantee

k~y*  and e/k — 2v/y’  as oy — 0 (4.220)

Additionally, the Lam-Bremhorst model predicts Tey ~ y* while the other
three models predict 7, ~ 3. Thus, all except the Lam-Bremhorst model are
consistent with Equation (4.210) as well.

Surface boundary conditions for low-Reynolds-number k-e models are not
entirely straightforward. On the one hand, the no-slip boundary condition tells
us that k must vanish at a solid boundary. On the other hand, the strongest
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thing we can say about the surface value of € is the second of Equations (4.220).
That is, we invariably must tie the surface value of € to the second derivative
of k at the surface. The Jones-Launder, Launder-Sharma and Chien models
build in the proper asymptotic behavior through introduction of the function €,.
Consequently, the boundary conditions appropriate at the surface are

k=é=0 at y=0 (4.221)

By contrast, Lam and Bremhorst deal directly with ¢ and specify the surface
boundary condition on € by requiring

8%k
€E=V—si at y=20 (4.222)
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Figure 4.31: Flat-plate boundary layer properties. CH = Chien; DM =
Dutoya-Michard; HO = Hoffiman; HP = Hassid-Poreh; LB = Lam-Bremhorst
with ¢ = v0%k/0y® at y = 0; LBI = Lam-Bremhorst with O¢/0y = 0 at
y = 0; LS = Launder-Sharma; WR = Wilcox-Rubesin. [From Patel, Rodi and
Scheuerer (1985) — Copyright (© AIAA 1985 — Used with permission.]
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Figure 4.32: Comparison of computed and measured skin Jriction for low-
Reynolds-number flows with pressure gradient. CH = Chien; LBl = Lam-
Bremhorst with Oc/dy = 0 at y = 0; LS = Launder-Sharma; WR = Wilcox-
Rubesin. [From Patel, Rodi and Scheuerer (1985) — Copyright © AIAA 1985
— Used with permission.]

As an alternative, Lam and Bremhorst propose using

g—; =0 at =0 (4.223)
While Equation (4.223) is easier to implement than Equation (4.222), there is no
a priori reason to expect that the next term in the Taylor-series expansion for e
should vanish.

In a review article, Patel, Rodi and Scheuerer (1985) compare seven low-
Reynolds-number variants of the k-¢ model and the Wilcox-Rubesin (1980) k-w?
model. Figure 4.31 compares computed and measured velocity and dimension-
less turbulence kinetic energy (k+ = k /u?) profiles for the flat-plate boundary
layer. As shown, several models fail to provide accurate velocity profiles for the
incompressible flat-plate boundary layer.

Figure 4.32(a) shows that for adverse pressure gradient, the Wilcox-Rubesin
model (which was not designed with low-Reynolds-number applications in mind)
most faithfully matches measured [Andersen et al. (1972)] skin friction. Fig-
ure 4.32(b) shows that none of the models reproduces the measured skin friction
for the low-Reynolds-number, favorable pressure gradient flow of Simpson and
Wallace (1975). This further demonstrates that the only thing low-Reynolds-
number modifications do is fix the k-¢ model’s problems in predicting the con-
stant C' in the law of the wall.

There is a popular misconception that low-Reynolds-number modifications
to the k-¢ model can remove its deficiencies for adverse pressure gradient flows.
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This mistaken notion overlooks the volumes of data on and physical understand-
ing of turbulent boundary layers established during the twentieth century, most
notably by Clauser and Coles. Recall from Subsection 4.6.1 that Coles describes
the turbulent boundary layer as a “wake-like structure constrained by a wall” and
notes that different scales and physical processes are dominant in the sublayer
and defect layer. As noted above, since perturbation analysis shows that the
k-¢ model predicts defect-layer data rather poorly, we cannot reasonably expect
viscous corrections (which are negligible in the physical defect layer) to correct
the problem.

Figure 4.33 clearly illustrates this point. The figure compares computed and
measured skin friction for the 12 incompressible boundary layers with adverse
pressure gradient considered carlier (see Figure 4.30). Results are presented
for the Jones-Launder, Launder-Sharma, Lam-Bremhorst and Chien k-¢ models
and for the Wilcox (1998) k-w model. Discrepancies between computed and
measured c; increase for all four k-¢ models as the strength of the pressure
gradient increases. As discussed in the last section, k-w resulis are close to
measured values for all twelve cases, including the nearly separated Flow 5300
(the Chien model predicts separation for this case). In terms of the final values
of ¢y, the average difference between computation and measurement for the 12
cases is 6% for the k-w model,'? 43% for the Jones-Launder model, 46% for
the Chien model, 47% for the Launder-Sharma model and 58% for the Lam-
Bremhorst model.

These results confirm the defect-layer perturbation solution presented in Sub-
section 4.6.2, which shows that [see Equation (4.179}]:

U.—-U

Ur

1
~ v—gfnn + A — BrBnénn + O (:q2€m?) as 1n—0 (4.224)

where the coefficient B is given in Table 4.7. Combining Equation (4.224) with
Equation (4.171), the effective law of the wall predicted by the k-e model is

1
i s ;f?ny+ +C+ B:Bnpfny  as  yT > (4.225)

Since n < 1, the term SrBnény is negative, so that we should expect the
computed velocity profile to lie below the classical law-of-the-wall line on a semi-
log plot. Figure 4.34 compares the computed Launder-Sharma model velocity
profile with experimental data, the standard law of the wall and a defect-layer
solution for 3; = 2. Examination of the numerical solution tells us that the
implied constant in the law of the wall, C, is 5.5. As shown, the numerical
solution indeed lies below the law-of-the-wall line, while the defect-layer profile
shape is similar to the computed profile. We should not expect exact agreement

12The average difference increases to 7% for the Wilcox (2006) k-w model.



4.9. LOW-REYNOLDS-NUMBER EFFECTS 199

| 1o%ce 103c , 103, - 103cy
| .
L& T T & T T - T T C e T T
: FLou Zi00] ‘ Fisw seoq
1
i A B .- - P = N -
: T ! I I T kh&“
[ .‘_“'—'—5“7——— - : E e TTTT———, T =l r—“?‘—-—-\‘ |
2 & 2 : 2 L
. o Ik
1 g\—‘"-1_—______‘__\ E a
| e w0 n\"\ = B o S s S ok i ]
F a
i LS
—— . \‘W‘——h________‘_ a
L ®soun L_h‘—-——--___._ —_ a
ol o a T, -% = Tovuy, LA o L ] o} s WL
| —— . ® Ll
- a
of T, el i o T ol e ” ]
| R =
! a
.n_&\’“\*‘ﬁ o ol Trremy b oF——a . kuw =i |
I 3™
o L L o 1 'l o J L [=] 1 Ll
i o.s 1.5 z2.= 3.5 [=] a 16 =2} 2 A & a [s] & 1z 18
! Ll MOF4 E L ] =iFr )
. 10%c, 107C, 103, 103c,
: :
) T T s T T s T T = T T
i IP_I_DI.«I eﬂ\g_ﬂl |F'|-.°N ESDDF IF:..DU EEDD] FLDOWL a4%ag
B E 4 - < -

2F E z} = B L= ‘K_\ B
(-;—g"'r"’_"_"_“ oo S A e & ¢ e o oal -

- JL
i -, a
ey S —_ ol i o Ty r—m———— ] - J
io rd s - ° S . RS TR = = S

() :
LS| & (=)

B 50°° b D_(—_‘__;_'__‘H—_IFE. °r .t o ° DI_E_ =

& P . L n | e a
2 g o g b s g g 1
—_—0 g
e [P
=] L L o 1 L a i - | o
= = - s 18 2.5 5.5 7.5 ] - & a o - a 12
LR 3 ] MOFe LFE ) WL FeD
103c, 103c, 103c, i3y
=] T T L=} T T & T T - T T
) Frow 12p0] {FLod aapal [Frow S300] —‘
i
| af L al B -l E .-
sl L _ 2t P SR Ej\kiﬂxq‘“:c =

Figure 4.33: Computed and measured skin friction for boundary layers with
adverse pressure gradient; CH = Chien; JL = Jones-Launder; LB = Lam-
Bremhorst; LS = Launder-Sharma; kw = Wilcox (1998) k-w.
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Figure 4.34: Computed and measured near-wall velocity profiles for Samuel
and Joubert’s adverse pressure gradient flow, x = 3.40 m: — Launder-Sharma
(1974) k-¢ model with k = 0.43 and C = 5.5; o Samuel-Joubert.

between the computed profile and the defect-layer profile since 3, varies quite
rapidly with z for the Samuel-Joubert flow. However, the similarity of their
shapes is striking. The important point to note is the impact of the term in
Equation (4.225) proportional to the equilibrium parameter, 3. Its effect is to
distort the velocity profile throughout the defect layer, including its asymptotic
form approaching the viscous sublayer from above.

As a final comment on low-Reynolds-number corrections for the k-¢ model,
using the dimensionless parameters R, and y™ [Equation (4.215)] is ill advised.
Both depend on distance normal to the surface, which can cause difficulty in
complex geometries such as a wing-fuselage junction. Also, it is ironic that sev-
eral additional closure coefficients and functions are needed for the k-¢ model to
behave properly in the near-wall region of a turbulent boundary layer. Dissipation
is, after all, a phenomenon that occurs in the smallest eddies, which is all we find
in the near-wall region. This further underscores the fact that there is virtually
no connection between the exact equation for € and its modeled counterpart.

4.9.2 Transition

Turbulence model equations can be integrated through transition from laminar
to turbulent flow, although most models predict transition at Reynolds numbers
that are at least an order of magnitude too low. The following discussion focuses
mostly on the k-w model, whose behavior through transition is easiest to under-
stand. The discussion also demonstrates why the k-¢ model is so much harder
to implement for transitional flows. To understand why and how the k-w model
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predicts transition, consider the flat-plate boundary layer. For the k-w model, the
incompressible, two-dimensional boundary-layer form of the equations for & and
w 18 as follows. 57

2 :
U?—‘ri + Vf?—}rE = (@-) - Btwk + L4 [(V -+ U*&*g) ?ﬁ} (4.227)

U  _8U B

Oz dy dy Oy Jy
ow  Ow  w  [OUN? ., 040kdw 8 kY Ow
U3V ay =i (5 ) ~A T ayay Ty [( oo 5) aa]
(4.228)
k N oU /0y
Blgel= w = max § W, Clim——r— 4,229
= { ; h—hﬁg/a*} ( )

where §; = 9/100 [Equation (4.229)] is the value of 3* appropriate for fully-
turbulent flow. With one other exception, all notation and closure coefficients are
as defined in Equations (4.36) ~ (4.42). The only difference is the appearance
of an additional closure coefficient o* in Equations (4.227) — (4.229). This
coefficient is equal to unity for the standard high-Reynolds-number version of
the k-w model. We can most clearly illustrate how the model equations predict
transition by rearranging terms in Equations (4.227) and (4.228) as follows.

Ok Ok y 15} .+ K\ Ok
Ua + Va—y = PG wk + % [(U+J o% w) 3y] (4.230)

ow aw_ o 040k Jw 5] kY Ow
U+ Vay = P+ e+ g (v oo D] @

The net production per unit dissipation terms in the two equations, P; and
P, are defined by:!?

_ ot (OU/ay\? _ o’ (GU/ay)z_ ,
Pk-—F( L ) L Pu=p (= 1 (4.232)

There are two important observations worthy of mention at this point. First,
if the turbulence kinetic energy is zero, Equation (4.231) has a well-behaved
solution. That is, when k& = 0, the eddy viscosity vanishes and the equation
uncouples from the k equation. Consequently, the k-w model has a nontrivial
laminar-flow solution, with v, = 0, for w. Second, the signs of P, and P,
determine whether & and w are amplified or reduced in magnitude. However,

3For this discussion, we assume that & = w, which reflects the fact that production is less than
dissipation until transition has occurred.
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it is not obvious from Equation (4.232) how the signs of these terms vary with
Reynolds number as we move from the plate leading edge to points downstream.
We can make the variation obvious by rewriting Equation (4.232) in terms of the
Blasius transformation for a laminar boundary layer.

Before we introduce the Blasius transformation, we must determine the ap-
propriate scaling for w. To do this, we note that close to the surface of a flat-plate
boundary layer (laminar or turbulent), the specific dissipation rate behaves ac-
cording to!# [see Equation (4.187) and Table 4.8]:

6v
- 2
Boy

In terms of the Blasius similarity variable, 75, defined by

as y—0 (4.233)

w

Y
e (4.234)
’ Vve/Us
where Uy, is freesiream velocity, the asymptotic behavior of w approaching the

surface is
U 6

T Bon?
Since Uy /x has dimensions of 1/time, we conclude that the appropriate scaling
for w in the Blasius boundary layer is given by

w = U%W(;n, ) (4.236)

as 70 (4.235)

w —

where W (x,n) is a dimensionless function to be determined as part of the so-
lution. Also, we write the velocity in terms of dimensionless velocity, U(z, ),

according to
U=U,U(z,n) (4.237)

Noting that 3 = 3, = 0.0708 for two-dimensional flows, the net production-
per-unit-dissipation terms become

N 2

: a* au/on\> aa* U /on
Po=2% Re, (Z5L1) 1, P, = . ~1 (4238
Py ig Re, ( 7 ) 1, £ B, Re ( W ) 1 (4.238)

Thus, both P, and F,, increase linearly with Reynolds number, Re,. From the
exact laminar solution for I4(n) and W (n) [the = dependence vanishes for the
Blasius boundary layer], the maximum value (with respect to 7) of the ratio of

U /On to W is
OU [On 1
—_— Y —— 239
( )mmB 300 (4.239)

w

4K ¢ep in mind that dissipation is € = 3wk so that w can be finite even when k and e vanish.
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The precise value of this ratio is a weak function of the freestream value of
w, ranging between 0.0025 and 0.0040. The maximum occurs about midway
through the boundary layer (y/8 = 0.56), a point above which the exact near-wall
behavior of w [Equation (4.235)] does not hold. Hence, a complete boundary-
layer solution is needed to determine the maximum ratio of 84/ /Onto W.

As long as the eddy viscosity remains small compared to the molecular vis-
cosity, we can specify the precise points where P; and P, change sign, which
impact the beginning and end of transition, respectively. Using Equation (4.239),
we conclude that the sign changes occur at the following Reynolds numbers.

(Reg)k =9 - 104%, (Reg)w =9- 1045%; (4.240)
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Figure 4.35: Skin friction variation for a boundary layer undergoing transition
Srom laminar to turbulent flow.

With no viscous modifications, the closure coefficients c, a*, 3, and 3* are
13/25, 1, 0.0708 and 9/100, respectively. Using these fully-turbulent values,
we find (Rez)r = 8100 and (Re, ), = 12254. Thus, starting from laminar flow
at the leading edge of a flat plate (see Figure 4.35), the following sequence of
events occurs.

1. The computation starts in a laminar region with k& = 0 in the boundary
layer and a small freestream value of k.

2. Initially, because P < 0 and P,, < 0, dissipation of both k£ and w exceeds
production. Turbulence kinetic energy is entrained from the freestream and
spreads through the boundary layer by molecular diffusion. Neither & nor
w is amplified and the boundary layer remains laminar.

3. At the critical Reynolds number, Re,, = 8100, production overtakes
dissipation in the k equation. Downstream of z., production exceeds
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dissipation in the k equation and turbulence kinetic energy is amplified.
At some point in this process, the eddy viscosity grows rapidly and this
corresponds to the onset of transition.

4. k continues to be amplified and, beyond Re, = 12254 production over-
takes dissipation in the w equation. w is now amplified and continues grow-
ing until a near balance between production and dissipation is achieved in
the k equation. When this near balance is achieved, transition from laminar
to turbulent flow is complete.

Consistent with experimental measurements, the entire process is very sensitive
to the freestream value of k. There is also a sensitivity to the freestream value
of w, although the sensitivity is more difficult to quantify. These observations
make the following three points obvious.

e First, turbulence kinetic energy begins growing at a Reynolds number of
8100. By contrast, linear-stability theory tells us that Tollmien-Schlichting
waves begin forming in the Blasius boundary layer at a Reynolds number
of 90000. This is known as the minimum critical Reynolds number
for infinitesimal disturbances. Correspondingly, we find that the model
predicts transition at much too low a Reynolds number.

e Second, inspection of Equation (4.240) shows that the ratio of 3, to ac”
controls the value of (Re,),,, and hence the width of the transition region.

¢ Third, transition will never occur if P,, reaches zero earlier than Py. Thus,
occurrence of transition requires

aa® < o*f, /8" as Re, —0 (4.241)

where the quantity Rer is turbulence Reynolds number defined by

Re, — F (4.242)
w

This fact must be preserved in any viscous modification to the model.

Our goal is to devise viscous modifications that depend only upon Rer. As
noted in the preceding subsection, this quantity is independent of flow geometry
and thus preserves the universal nature of the model. We also proceed with two
key objectives in mind. The most important objective is to match the minimum
critical Reynolds number. Reference to Equation (4.240) shows that, in order
to have (Re, ), = 90000, we must require

g*/a* =1 as Rer—0 (4.243)
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On the one hand, our primary objective is to devise viscous modifications that
make a realistic description of the gross aspects of the transition from laminar
to turbulent flow possible with the k-w model. On the other hand, there is a
secondary objective that can be accomplished as well. That is, we would also like
to achieve asymptotic consistency with the exact behavior of k and dissipation,
¢ = 3" kw, approaching a solid boundary. Specifically, we would like to have
k/y? — constant and ¢/k — 2v/y? as y — 0. Close to a solid boundary, the
dissipation and molecular-diffusion terms balance in both the k£ and w equations.
The very-near-wall solution for w is given by Equation (4.233). The solution for
% is of the form

k/y" — constant as y-— 0 (4.244)

_1 / o
n—2{1+. “‘24,@0} (4.245)

Noting that dissipation is related to & and w by

where n is given by

€= f"kw (4.246)
we can achieve the desired asymptotic behavior of k provided
B /B —1/3 as Rer —0 (4.247)

Requiring this limiting behavior as Re, — 0 is sufficient to achieve the desired
asymptotic behavior as y — 0 since the eddy viscosity, and hence, Re,. vanishes
at a solid boundary.

If we choose to have 3, constant for all values of Re;, Equations (4.241),
(4.243) and (4.247) are sufficient to determine the limiting values of a* and 3*
and an upper bound for a” as turbulence Reynolds number becomes vanishingly
small. Specifically, we find

aa® < [,
a* —  Bo/3 as Re;y —0 (4.248)
,6* g ﬁo;’f‘?’

Wilcox and Rubesin (1980) make the equivalent of aa* and o* in their k-w?
model approach the same limiting value and obtain excellent agreement with
measured transition width for incompressible boundary layers. Numerical exper-
imentation with the k-w model indicates the optimum choice for incompressible
boundary layers is aa* — 0.8043,, or

aa® — 0.057 as Rep — 0 (4.249)
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Following Wilcox (1992a), we postulate functional dependencies upon Re, that
guarantee the limiting values in Equations (4.248) and (4.249), as well as the
original fully-turbulent values for Re, — 0.

ol + Res /Ry

i — 4.250
1+ Rer/Ry ( )
13 a,+ Rey /R, e
— . 4251
% 11 Ren /B, @) 20l)
9 1008,/27 + (Rer/Rg)*
* . 4252
5 =100 1+ (Rer/Rp)? (4208)
1, 3 1,1 i
Bo = 0.0708, o= o O = 3 Ody = 3 o = 3,80, Gl = 5 (4.253)
g B
= 05 0; 4.254)
7= % dw “
do; 8$j 01:3'
Rz=8, Ry=6, R.,=26l1 (4.255)

The three coefficients Rg, R and R, control the rate at which the closure
coefficients approach their fully-turbulent values. We can determine their values
by using perturbation methods to analyze the viscous sublayer.!® Implementing
the procedure discussed in Subsection 4.6.3, we can solve for the constant in the
law of the wall, C. For given values of Rz and Ry, there is a unique value of
R, that yields a constant in the law of the wall of 5.47, which is the value given
by the model with no viscous modifications. For example, Figure 4.36 shows
how R, varies with R, when Rg = 8.

For small values of R the peak value of k near the surface is close to the
value achieved without viscous corrections, viz., u2/v/B*. As Ry increases,
the maximum value of %k near the surface increases. Figure 4.37 shows how
R, and kY., = kmaz/u? vary with Rg when R, = 6. Again, the value of
R, corresponds to C' = 5.47. Comparison of computed sublayer structure with
Direct Numerical Simulation (DNS) results of Mansour, Kim and Moin (1988)
shows that the optimum choice for these three coefficients is as indicated in
Equation (4.255).

The only flaw in the model’s asymptotic consistency occurs in the Reynolds
shear stress, 7., While the exact asymptotic behavior is 7., ~ 3, the model

15Note that this approach reflects a degree of optimism that the same viscous corrections can be
expected to capture the physics of the viscous sublayer and transitiona! flows.
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Figure 4.36: Variation of R,, with R, when Rg=8.

predicts 75, ~ y*. This discrepancy could easily be removed with another
viscous modification. However, as will be shown later in this subsection, this is of
no significant consequence. It has no obvious bearing on cither the model’s ability
to predict transition or properties of interest in turbulent boundary layers. The
additional complexity and uncertainty involved in achieving this subtle feature
of the very-near-wall behavior of 7., does not appear to be justified.

Finally, to complete formulation of the low-Reynolds-number k-w model, we
must specify surface boundary conditions. Again exercising Program SUBLAY
(see Appendix C), we find that Equation (4.207) for surface mass injection is
replaced by

Sszﬁ%—w (4.256)

R. 20 — T T T s 18 S m
6 |- =
s L g

0 P TR S
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Figure 4.37: Variation of R,, and the peak value of k* with Rg when Ry, = 6.



208 CHAPTER 4. ONE-EQUATION AND TWO-EQUATION MODELS

Similarly, Equation (4.202) for rough surfaces is replaced by

f 2
200
b4 [ kX <5
(fci) ° T

Sr = ¢ (4.257)
60 200\° 60| 5_p+
F*{(r) ] e

It is a simple matter to explain why little progress has been made in predicting
transition with the k-e model. The primary difficulties can be easily demonstrated
by focusing upon incompressible boundary layers. If we use the standard form
of the k-¢ model, Equations (4.227) — (4.229) are replaced by

9k ok oU \ 2 8 ok
US—.’L—' + Va_y = VUVt (8—'9) — €+ @ |:(U+ -UT/Jk) BE:I (4.258)
Oe Oe € oU \ 2 e 8 e
UEI:— -+ Va—y = CElEVT (E) ! Ceg'g + @ [(U + VT/UE)B_y] (4.259)
s =G,k e (4.260)

Equations (4.258) — (4.260) underscore a critical difference from the k-w model,
viz., if k is zero, € must also be zero. We cannot simply drop the eddy viscosity
in the € equation, because of the presence of k in the denominator of the €
equation’s dissipation term. The model does possess a laminar-flow solution for
the ratio of € to k. If we make the formal change of variables

€ = Ckw = B*kw (4.261)

and assume v, << v, the following laminar-flow equation for w results.

O O U\ 2 82w 2w Ok Ow
] — ., CF —1 v e - €2 — 1 & a 9 = ' a A
U B + Vay (Car ) fu (ay) (Cez )Cpw +v8y2 + k 9y Oy

(4.262)

Equation (4.262) is nearly identical to the limiting form of Equation (4.228) for
vr/v — 0. The only significant difference is the last term on the right-hand side
of Equation (4.262). Except close to the surface where k must be exactly zero,
this term is unlikely to have a significant effect on the solution for small nonzero
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values of k. However, establishing starting conditions is clearly more difficult
with the k-e model than with the k-w model because of this ill-behaved term.

Given the diverse nature of viscous modifications that have been proposed
for the k- model, it is impossible to make any universal statements about why a
specific model fails to predict realistic transition Reynolds numbers. Perhaps the
strongest statement that can be made is, few researchers have approached the
problem from the transition point of view. Most have sought only to achieve
asymptotic consistency as y — 0 (Subsection 4.9.1) and attempted transition
predictions only as an afterthought. We can gain some insight by examining
the net production per unit dissipation terms for the k& and e equations that are
analogous to Equation (4.238), viz.,

B dU/on\?  Cafa au/om\?
P = C. Re, W 1, .B.= CasC, Re, W 1 (4.263)

On the one hand, without viscous damping, if we assume Equation (4.239)
is valid, we find (Re; )r = 8100 and (Re;). = 10800. Consequently, as with the
high-Reynolds-number version of the k-w model, transition will occur at too low
a Reynolds number. On the other hand, because Cl., Ce2 and sometimes C.,
are multiplied by functions of distance from the surface and/or functions of Re.
(cf. fu, f1 and f> in Subsection 4.9.1) in low-Reynolds-number k-¢ models, we
cannot simply use Equation (4.239). Furthermore, as discussed in the preceding
subsection, some modelers add terms to the k and € equations in addition to
damping the closure coefficients. Each set of values for the closure coefficients
and additional terms must be used in solving Equation (4.262) to determine
the laminar-flow solution for ¢/k. While it is clearly impossible to make a
quantitative evaluation of all variants of the k-¢ model, we can nevertheless
make two general observations.

First, Rumsey et al. (2006) have shown that if C,, = foC,, at any point,
the k-e model has “arbitrary steady-state converged solutions that are highly de-
pendent on numerical considerations such as initial conditions and solution pro-
cedure.” This can occur, for example, with the Jones-Launder (1972), Launder-
Sharma (1974) and Lam-Bremhorst (1981) models. Nonphysical dependence on
initial conditions is a serious cause for alarm in transition computations.

Second, although this discussion is not intended as an exhaustive survey of
the numerous low-Reynolds-number versions of the k-¢ model, it does illustrate
how difficult it can be to apply the model to the transition problem. Given
enough additional closure coefficients and damping functions, the k-¢ model can
probably be modified to permit satisfactory transition predictions. However, even
if this is done, establishing starting conditions will ultimately require a solution
to Equation (4.262). That is, to initialize the computation, we must effectively
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transform to the k-w model. Since this is the natural starting point, it seems
illogical to perform subsequent computations in terms of & and e.

4.9.3 Channel and Pipe Flow

Figure 4.38 compares low-Reynolds-number k-w model channel-flow skin fric-
tion, cs, with the Halleen and Johnston (1967) correlation [Equation (3.139))].
Reynolds number based on channel height, H, and average velocity ranges from
10% to 10°. Computed c; differs from the correlation by less than 3% except
at the lowest Reynolds number shown where the correlation probably is inac-
curate. Velocity, Reynolds shear stress, and turbulence kinetic energy profiles
differ by less than 7%. Most notably, the model predicts the peak value of &k
near the channel wall to within 4% of the DNS value. Approaching the surface,
the dimensionless turbulence-energy production, P+ = v, (8U/8y)/u%, and
dissipation, et = ve/ul, are within 10% of the DNS results except very close
to the surface.
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Figure 4.38: Comparison of computed and measured channel-flow properties,
Rey = 13750. Low-Reynolds-number k-w model; o Mansour et al. (DNS),
o Halleen-Johnston correlation.
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Figure 4.39 compares computed pipe flow ¢ with Prandtl’s universal law of
friction [Equation (3.140)]. Reynolds number based on pipe diameter, D, and
average velocity varies from 10° to 105. As with channel flow, computed ¢ 7 falls
within 5% of the correlation except at the lowest Reynolds number shown where
the correlation is likely to be in error. Computed and measured velocity and
Reynolds shear stress profiles differ by less than 8%. Computed and measured
turbulence kinetic energy differ by about 5% including the region close to the
surface where the sharp peak occurs. Computed turbulence-energy production,
P+, and dissipation, e, differ from measured values by less than 10% except
where Laufer’s measurements are inaccurate close to the surface.
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Figure 4.39: Comparison of computed and measured pipe-flow properties,
Rep = 40000. —— Low-Reynolds-number k-w model; o Laufer; o Prandtl
correlation.

Aside from the sharp peak in k near the surface and dissipation approaching
a finite, non-zero value at the surface, these results for channel and pipe flow
are nearly identical to those obtained with no viscous modifications. Thus, in
the context of the k-w model, these are benign features of the turbulence that
have little significance for prediction of skin friction, Reynolds shear stress and
velocity profiles.
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4.9.4 Boundary-Layer Applications

Figure 4.40 compares computed and measured skin friction for the 16 baseline
test cases considered for algebraic and one-equation models. Computations have
been done using Program EDDYBL (see Appendix C). Additionally, Table 4.10
summarizes average differences between computed and measured ¢y at the end
of each computation. As indicated in the table, both the low-Reynolds-number
(Low-Re) and high-Reynolds-number {High- Re) versions of the k-w model re-
produce measured skin friction to well within measurement error.

Table 4.10: Differences Between Computed and Measured Skin Friction.

| Pressure Gradient | Flows | Low-Re k-w | High-Re k-w |
Favorable 1400, 1300, 2700, 6300 4% 3%
Mild Adverse 1100, 2100, 2500, 4800 4% 5%
Moderate Adverse | 2400, 2600, 3300, 4500 8240 9%
Strong Adverse 0141, 1200, 4400, 5300 7% 8%
All — 6% 6%

With just one exception, differences between the Low-Re and High-Re ver-
sions of the k-w model are almost imperceptible. This is expected since the
low-Reynolds-number modifications are confined almost exclusively to the vis-
cous sublayer. The skin friction, by contrast, is controlled by the overall balance
of forces (pressure gradient and surface shear stress) and the momentum flux
through the entire boundary layer.

The only noteworthy differences between Low-Re and High-Re model pre-
dictions occur for the incipient separation case, Flow 5300. The Low-Re model
provides a solution with ¢; = 3.1 -10~% at the final station, compared to
¢y = 6.8 -107* for the high-Reynoids-number version of the model. The mea-
sured value of ¢; = 5.3-107* lies midway between model predictions with and
without viscous modifications.

The disparate results obtained for Flow 5300 are likely due to the fact that,
approaching separation, the specific dissipation rate is reduced to smaller levels
than those prevailing in attached boundary layers. Recall that in the sublayer, w
scales with u2/v. Consequently, since the viscous modification to the closure
coefficient o directly impacts the production of w, the percentage change will
be much greater when w is small. This will, in turn, have a nontrivial effect
throughout the boundary layer, and thus have a noticeable impact on the skin
friction.

As a final comment, k-w model-predicted skin friction and velocity for Flow
5300 — with or without viscous modifications — are much closer to measure-
ments than those of any other turbulence model known to this author.
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Figure 4.40: Computed and measured skin friction for boundary layers subjected
to a pressure gradient. Top row - favorable Vp; next to top row - mild adverse
Vp; next to bottom row - moderate adverse Vp,; bottom row - strong adverse
Vp. — Low-Reynolds-number k-w model; - - - High-Reynolds-number k-w
model: o measured.
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Turning now to transition, Figure 4.41 compares computed and measured
transition Reynolds number, Rep,, for an incompressible flat-plate boundary
layer. We define the transition Reynolds number as the point where the skin
friction achieves its minimum value. Results are displayed as a function of
freestream turbulence intensity, 1", defined by

2 k.

’ — — ——
T/ =100y /375 (4.264)

where subscript e denotes the value at the boundary-layer edge. As shown, con-
sistent with the data compiled by Dryden (1959), Reg, increases as the freestream
intensity decreases. Because w can be thought of as an averaged frequency of
the freestream turbulence, it is reasonable to expect the predictions to be sensi-
tive to the freestream value of w. To assess the effect, the freestream value of
the turbulence length scale £ — k!/2/w has been varied from 0.00148 to 0.1008
where J is boundary-layer thickness. As shown, computed Reg, values bracket
most of the data. Unlike the situation for free shear flows, the k-w model’s
sensitivity to the freestream value of w is a desirable feature for transition appli-
cations. Physical transition location is not simply a function of 7”, but rather is
frequency dependent. While it is unclear how the freestream value of w should
be specified, consistent with measurements, the model is not confined to a single
transition location for a given T' regardless of the frequency of the disturbance.

Figure 4.42 compares computed width of the transition region with measure-
ments of Dhawan and Narasimha (1958), Schubauer and Skramstad (1948), and
Fisher and Dougherty (1982). We define transition width, Ax,, as the distance
between minimum and maximum skin-friction points. The computed width,
Reag,, falls within experimental data scatter for 104 < Re,, < 107. Aux, is
unaffected by the freestream value of w.

While these results are interesting, keep in mind that transition is a compli-
cated phenomenon. It is triggered by a disturbance in a boundary layer only if
the frequency of the disturbance falls in a specific band. Reynolds averaging
has masked all spectral effects, and all the model can represent with k£ and w
is the intensity of the disturbance and an average frequency. Hence, it is possi-
ble for the turbulence model to predict transition when it shouldn’t occur. The
model equations thus are sensible in the transition context only if the triggering
disturbance is broad band, i.e., contains all frequencies.

Additionally, we have only guaranteed that the point where k is first amplified
matches the minimum critical Reynolds number for the incompressible, flat-
plate boundary layer. To simulate transition with complicating effects such as
pressure gradient, surface heat transfer, surface roughness, compressibility, etc.,
the values of o and a, must change [see Wilcox (1977)]. Their values can be
deduced from linear-stability theory results, or perhaps from a correlation based
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Figure 4.41: Transition location for an incompressible flat-plate boundary layer:
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on stability theory. Nevertheless, some information must be provided regarding
the minimum critical Reynolds number for each new application.

In general, we can always match the measured transition point by adjusting
the freestream value of k. This is satisfactory when the transition point occurs
at a large Reynolds number, which requires ko, to be small relative to UZ.
Figure 4.43, for example, compares computed and measured skin friction for an
incompressible flat-plate boundary layer [ Schubauer and Klebanoff (1955)]. The
computation was done with T” = 0.05%, which was selected by trial and error
to best match the measured transition point.

103Cf

5 T T T T T

4 L —

Figure 4.43: Computed and measured skin friction for a trawnsitional flat-plate
boundary layer; Wilcox (2006) k-w model,; o Schubauer and Klebanoff.

However, for a high-speed flow in which transition has been triggered at a
relatively small Reynolds number, often unreasonably large values of k., are
needed to cause transition, so large as to affect the total energy in the freestream
in a physically unrealistic manner. Thus, a new method for triggering transition
s needed.

Wilcox (1994) offers an alternative to depending upon the model to predict
the onset of transition, known as the numerical roughness strip. The foundation
of the concept rests upon the fact that by using a finite value for w at the surface,
the model simulates surface roughness (Subsection 4.7.2). Since increasing the
surface roughness height corresponds to decreasing the surface value of w (and
thus the dissipation in the k equation), the model predicts that roughness will
have a destabilizing effect. This is consistent with measurements, and patches
of surface roughness are often used to trigger transition in experiments.

Using Equations (4.196) and (4.202) to simulate a roughness strip, Wilcox
(1994) has run more than 20 transitional boundary layer cases to test this idea. In
all cases, computation begins at the plate leading edge, and the turbulence kinetic
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energy is initially set to an extremely small value, viz., 10715U2 | throughout the
boundary layer. This value is too small to trigger transition naturally. The initial
w profile is given by the exact laminar-flow solution to the model equations. Us-
ing this approach, the numerical roughness strip triggers transition at the desired
location for all of the cases considered using a roughness strip with k, and the
streamwise extent of the strip, As, given by the following correlations.

Ks _ o { 2000 ,3} (4.265)
5 =
As
= = 0.015y/Re,, (4.266)
t

The quantities 6; and Re,, are the boundary-layer thickness and transition
Reynolds number based on arclength.

Figure 4.44 compares computed and measured [Blair and Werle (1981), Blair
(1983)] Stanton number, St, for transitional boundary layers with surface heat
transfer. According to Equations (4.265) and (4.266), the dimensions of the
roughness strip required to match the measured transition point for the case
with favorable pressure gradient are (k;/d:, As/d) = (8.5, 8.7). As shown,
differences between computed and measured Stanton numbers are no more than
15% for the two cases shown.
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Figure 4.44: Computed and measured Stanton number for transitional boundary
layers with surface heat transfer. [From Wilcox (1994) — Copyright © AIAA
1994 — Used with permission.]

Perhaps the most practical way to use the model for transitional flows is in
describing the transitional region, as opposed to predicting transition onset. Of
course, the question of sensitivity to spectral effects in the transition region must
be raised. Using lincar-stability computations, Wilcox (1981a) shows that after
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the initial disturbance has grown to a factor of e* times its initial value, the
turbulence model closure coefficients lose all memory of spectral effects. Thus,
we can conclude that not far downstream of the minimum critical Reynolds
number, Reynolds averaging is sensible. This tells us that, if the point at which
the transition begins is known, using a numerical roughness strip is a practical
and accurate way of simulating transitional boundary layers.

Low-Reynolds-number corrections increase the complexity of two-equation
models significantly. The high-Re k-w model has just 6 closure coefficients and
2 closure functions. The low-Re version described in this subsection has 11
closure coefficients and 5 closure functions. The various low-Reynolds-number
models discussed in Subsection 4.9.1 involve a similar increase in the number of
closure coefficients and damping functions. The Launder-Sharma (1974) model,
for example, has 9 closure coefficients and 4 closure functions.

If viscous effects are insignificant for a given application, it is advisable
to use the simpler high-Reynolds-number version of the model. In the case of
the k-¢ model, if you need to integrate through the viscous sublayer, you have
no choice but to use one of the low-Reynolds-number models, preferably one
that yields a satisfactory solution for simple flows such as the incompressible
flat-plate boundary layer. In the case of the k-w model, integration through
the sublayer can be done without introducing viscous corrections, and theré is
virtually no difference in model-predicted skin friction and velocity profiles with
and without viscous corrections for turbulent boundary layers.

4.10 Application to Separated Flows

Turning to separated flows, we first consider the axisymmetric flow with strong
adverse pressure gradient experimentally investigated by Driver (1991). Fig-
ure 4.45 compares measurements with computed skin friction and surface pres-
sure for the k-w model defined in Equations (4.36) — (4.42). The computations
were done using Program EDDY2C (see Appendix C). As shown, the k-w
model yields a separation bubble of length quite close to the measured value,
with the separation point slightly upstream of the measured location. Although
pressure downstream of reattachment is 10% higher than measured, results are
clearly much closer to measurements than those obtained with the Baldwin-
Lomax, Baldwin-Barth and Spalart-Allmaras models (see Figures 3.18 and 4.5).

Because the stress-limiter modification to the model [Equation (4.36)] sup-
presses the magnitude of the Reynolds shear stress, the viscous stress opposing
the adverse pressure gradient is reduced. This is attended by an increase in
separation-bubble size. To asses the impact of the stress limiter, Figure 4.45
also includes computed results using the Wilcox (1988a) k-w model. This model
includes neither cross diffusion nor a stress limiter. Separation-bubble length is
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Figure 4.45: Computed and measured flow properties for Driver’s separated
Slow; —— Wilcox (2006} k-w model; - - - Wilcox (1988a) k-w model: o Driver

about three-quarters of that predicted by the new k-w model, while the separation
points are nearly coincident. Aside from the separation-bubble size difference,
computed results are very similar. Hence, we conclude that: (a) the stress-limiter
effect is small for this flow and (b) its use with the k-w model yields flow prop-
erties that are closer to measurements than the Wilcox (1988a) version.

Menter (1992c) applied a hybrid k-w/k-¢ model to this flow using a stress
limiter. While computed pressure is very close to measured downstream of
reattachment, the predicted separation bubble is 57% longer than measured (see
Table 4.11). The table also includes results for several other turbulence models to
provide a comprehensive comparison of several models considered in Chapters 3
and 4. Note that, consistent with its muted response to adverse pressure gradient,
the Standard k-e model fails to predict any flow separation [Menter (1992¢)].

Table 4.11: Separation-Bubble Length for Driver’s Separated Flow.

| Model | Reference | Az/D | Deviation from Measured ]
Orne-Equation | Baldwin-Barth (1990) 322 +130%
Algebraic Baldwin-Lomax (1978) 2.89 +106%
One-Equation | Spalart-Allmaras (1992) 2.24 +60%
k-w/k-€ Menter (1992c¢) 2.20 +57%
Half-Equation | Johnson-King (1985) 1.69 +21%
k-w Wilcox (2006) 1.18 -16%
k-w Wilcox (1988a) 0.84 -40%
k-¢ Launder-Sharma (1974) 0.00 -100%
Measured Driver (1991) 140 = ]
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Figure 4.46: Computed and measured skin friction for flow past a backward-
facing step; Re, = 37500, —— Wilcox (1988a) k-w model; - - - k-e model;
o Driver-Seegmiller data. [From Menter (1992¢).]

Next, we consider the backward-facing step (see Figure 4.6 for the geometry).
Figure 4.46 compares computed and measured [Driver and Seegmiller (1985)]
skin friction for backstep flow with the upper channel wall inclined to the lower
wall at angles of 0° and 6°. Computed results are shown for the Wilcox (1988a)
k-w model and for the Standard k-e¢ model with wall functions; neither model
includes viscous corrections. As summarized in Table 4.12, the k-¢ model pre-
dicts reattachment well upstream of the measured point for both cases, while the
k-w model is within 4% of the measured location for both cases.

Table 4.12: Backstep Reattachment Length.

[ Model | Reference | a=0°] a=6° ]
k-€ Launder-Sharma (1974) 5.20 5.50
One-Equation | Spalart-Allmaras (1992) 6.10 8.60
k-w Wilcox (1988a) 6.18 8.45
k-w/k-¢ Menter (1992¢) 6.80 s

'_k-w Wilcox (2006) 7.07 —
Measured Driver-Seegmiller (1985) 6.26 8.10
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Figure 4.47: Computed and measured skin friction and surface pressure for flow
past a backward-fucing step;, Rey, = 37500; — Wilcox (2006) k-w model;
- - - Wilcox (1988a) k-w model; o Driver-Seegmiller

Note that, despite the apparent simplicity of the geometry, backstep computa-
tions require a relatively large number of grid points. Menter (1992¢), for exam-
ple, reports a reattachment length of 6.40 step heights for the Wilcox (1988a) k-w
model that he computed with a 120x120 finite-difference grid. Using a 301x163
grid with Program EDDY2C yields a shorter reattachment length of 6.18 step
heights, which is the value quoted in Table 4.12.

Focusing on a channel with a horizontal upper wall (o = 0°), Figure 4.47
compares computed and measured skin friction and surface pressure coefficient,
Cp, for the Wilcox (2006) k-w model. The figure also includes values predicted
by the Wilcox (1988a) version to help discern the effect of the stress limiter,
With the exception of the reattachment point, all computed flow properties are
nearly identical. As listed in Table 4.12, the reattachment length is 13% longer
with the stress limiter. Menter (1992c¢) found a similar effect in his computations.

Flow past a backward-facing step is mildly dependent on Reynolds number.
As summarized by Jovic and Driver (1995), reattachment length is somewhat
shorter at low Reynolds numbers. To assess the effect of Reynolds number on k-w
model backward-facing step predictions, we now consider the case documented
by Jovic and Driver (1994). Reynolds number based on step height for the



292 CHAPTER 4. ONE-EQUATION AND TWO-EQUATION MODELS

103¢; 6

0.2 .. o] ety il o Q -
0.1 -
0.0 § K -
—0.1 = -

—0.2 i 1 1 I 1 L L
-3 0 5 10 15 20 25 30 35

Figure 4.48: Computed and measured skin friction and surface pressure for
flow past a backward-facing step; Rey = 5000, — Wilcox (2006) k-w model;
- - - Wilcox (1988a) k-w model; o Jovic-Driver.

Jovic-Driver backward-facing step experiment is Re, = 5000. By contrast, the
Driver-Seegmiller case considered above has Re,; = 37500.

Figure 4.48 compares computed and measured skin friction and surface pres-
sure coefficient. Both versions of the k-w model predict ¢ and C}, variations
that fall within a few percent of measured values over most of the flowfield.
Predicted reattachment length is 6.64H (a 7% increase over the Rey = 37500
prediction) for the Wilcox (1988a) k-w model and 7.28 H (a 3% increase) for the
Wilcox (2006) version. Since the measured length is 6.00H (a 4% decrease),
neither model reflects the measured reduction of recirculation-region length.

All three of these examples show that the using the stress limiter with the k-w
model increases the size of the separated region. On the one hand, for Driver’s
separated axisymmetric flow (Figure 4.45), the stress limiter reduces differences
between computed and measured flow properties. This is unsurprising since the
separation bubble length is 40% smaller than measured without the limiter. On
the other hand, the stress limiter increases differences between predicted and
measured reattachment length for flow past backward-facing steps (Figures 4.47
and 4.48). This is also understandable because the model yields reattachment
lengths that are very close to measured in the absence of the stress limiter.
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Figure 4.49: Effect of the stress-limiter coefficient, Cyy,, on computed reattach-
ment length for a backward-facing step with Re, = 37500.

To gain some insight into the stress-limiter’s nature, recall that we compute
the eddy viscosity according to

k - 25,8, 7
Vr = 5, W = max {UJ, Cﬁm _)‘;*J’ } 3 Cgf,m == g (4267)

In implementing the stress-limiter concept for his k-w/k-e model, Menter (1 992c¢)
selects Ciim = 1 and excludes it from the hybrid w/e equation. Durbin (1996)
recommends Cy;,, = 1.03 for use with a pure k-w model.

Figure 4.49 indicates how reattachment length, z,., for the Re,, = 37500
backward-facing step varies with Cy;,,,. As shown, reattachment length increases
in a monotone fashion as Cj;,, increases. The asymptotic value for no stress
limiter, i.e., for Ciiy, = 0, is z,, = 6.33H, which is 1% larger than the measured
value.!S Selecting Cj;,,, = 7/8 yields a value of x, = 7.07H, which is within
13% of the measured length.

We have only briefly touched on the impact of the stress limiter in this chapter,
mainly to demonstrate that its effect on incompressible flows is relatively small
for the k-w model. However, as we will see in Chapter 5, it has a much more
significant effect for compressible flows. Selecting Ciin, = 7/8 proves to be
optimum for shock-separated flows, We defer further discussion of the stress
limiter to the next chapter (see Subsection 5.8.4).

The value differs from the Wilcox (1988a) k-w model’s value of 2 = 6.18H because of
closure-coefficient differences and the inclusion of cross diffusion in the Wilcox (2006) model.
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Han (1989) has applied the k-e¢ model with wall functions to flow past a sim-
plified three-dimensional bluff body with a ground plane. The object considered
is known as Ahmed’s body [Ahmed et al. (1984)] and serves as a simplified
automobile-like geometry. In his computations, Han considers a series of after-
body slant angles. Figure 4.50(a) illustrates the shape of Ahmed’s body with
a 30° slant angle afterbody. Figure 4.50(b) compares computed and measured
surface pressure contours on the rear-end surface for a 12.5° slant angle.

As shown, computed pressure contours are similar on the slanted surface, but
quite different on the vertical base. For slant angles up to 20°, the computed base
pressures are significantly lower than measured. Consequently, the computed
drag coefficient is about 30% higher than measured. Considering how poorly
the k-e model performs for boundary layers in adverse pressure gradient and for
the two-dimensional backward-facing step, it is not surprising that the model
would predict such a large difference from the measured drag in this extremely
complicated three-dimensional, massively-separated flow.

This is a quintessential example of how important turbulence modeling is
to Computational Fluid Dynamics. Recall that there are three key elements to
CFD, viz., the numerical algorithm, the grid and the turbulence model. Han
uses an efficient numerical procedure and demonstrates grid convergence of his
solutions. Han’s computational tools also include state-of-the-art grid-generation
procedures. Han’s research efforts on this problem are exemplary on both counts.
However, using the k-¢ model undermines the entire computation for the follow-
ing reasons.

s Because the model fails to respond in a physically realistic manner to
the adverse pressure gradient on the rear-end surface, the predicted skin
friction is too high.

e This means the vorticity at the surface is too large, so that too much
vorticity diffuses from the surface.

e This vorticity is swept into the main flow and too strong a vortex forms
when the flow separates.

o This, of course, reduces the base pressure.

Thus, the k-¢ model’s inability to accurately respond to adverse pressure gradient
distorts the entire flowfield.

These results debunk the notion that a turbulence model needn’t do particu-
larly well in predicting attached flows as long as it provides satisfactory results
for a particular advanced application that might involve complicated flow phe-
nomena like massive separation. Most likely, such a model has been fine tuned
for precisely that advanced application and, just as likely, does not apply very
far beyond the specifics of the application.
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Figure 4.50: Flow past Ahmed’s body — high-Re k-¢ computations. [From Han
(1989) — Copyright © AIAA 1989 —- Used with permission. i
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Our final separated-flow application is particularly difficult to simulate, i.e.,
blood flow in an arterial stenosis. The word stenosis, common in bioengineering
literature, means “narrowing of a passage.” Thus, we consider the flow of blood
through an artery that has a narrowing due to the deposit of plaque caused by
excess cholesterol in the blood stream. One feature characteristic of blood flow
is the low Reynolds number, Re, associated with the human body. For example,
Re ranges from about 400 in the common carotid artery to 1500 in the ascending
aorta. In the absence of stenosis, the flow is laminar since fully-developed pipe
flow does not experience transition to turbulence until the Reynolds number
based on diameter and average flow speed exceeds about 2300. However, the
obstruction presented by stenosis leads to flow separation, which in turn causes
transition to turbulence. Thus, the problem we address is a low-Reynolds-number
flow that includes transition, separation and, ultimately, reattachment.

Figure 4.51 shows the geometry and streamlines of arterial stenosis compu-
tations performed by Ghalichi et al. (1998). The Ghalichi et al. computations
have been done using the Wilcox (1994) low-Reynolds-number version of the
k-w model, which is very similar to the low-Re k-w model described in Sub-
section 4.9.2. The flows indicated in Figures 4.51(a) and (b) correspond to a
reduction in cross-sectional area of 50% and 75%, respectively. In both cases, a
separation bubble is present downstream of the stenosis.

(b) 75% Stenosis

Figure 4.51: Computed streamlines for blood flow through arteries with 50%
and 75% stenosis; Re = 1000.

Figure 4.52(a) compares computed and measured [Saad and Giddens (1983)]
reattachment length, L,, for the two different stenoses — the quantity I denotes
the diameter of the unobstructed artery. The largest difference between theory
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Figure 4.52: Computed and measured flow properties for blood flow in arterial
stenoses.

and experiment is 10% of scale (for 75% stenosis and Re = 500). One of
the most remarkable features of the computed flowfields is the critical Reynolds
number at which transition to turbulence occurs. Consistent with measurements,
the k-w model predicts transition at about Re = 1100 for a 50% stenosis and at
Re = 400 for a 75% stenosis.

Figure 4.52(b) compares computed and measured static pressure at the surface
in a 50% stenosis for one of the Ghalichi et al. k-w based computations, and for
results obtained in an earlier study by Zijlema et al. (1995) using the Standard
k-e model. While differences between computed and measured pressures for the
k-w model are no more than 20% downstream of the stenosis, the Standard k-¢
model predicts pressures that bear no resemblance to measured values.

4.11 Range of Applicability

Early one-equation models were based on the turbulence kinetic energy equation,
and were incomplete. As discussed in Section 4.2, only a modest advantage
is gained in using such models rather than an algebraic model. The primary
difficulty is the need to specify the length scale for each new application. There
is no natural way to accommodate an abrupt change from a wall-bounded flow
to a free shear flow such as near an airfoil trailing edge or beyond the trunk lid
of an automobile. The only real advantage of using this type of one-equation
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model rather than a two-equation model is that numerical solution is simpler.
One-equation models tend to be nearly as well behaved as algebraic models,
while two-equation models, especially low-Re k-¢ models, can be quirky.

By contrast, more recent one-equation models based on a postulated equation
for eddy viscosity are complete. Two of the most commonly used models are
those of Baldwin and Barth (1990) and of Spalart and Alimaras (1992).

The Baldwin-Barth model is very inaccurate for attached boundary layers,
consistently predicting values of skin friction that are typically 25% below cor-
responding measurements. The model’s predictions are even farther from mea-
surements for separated flows, and its equation often presents serious numerical
difficulties. Thus, it is clear that the Baldwin-Barth model is of little value for
general turbulent-flow applications.

The Spalart-Allmaras model predicts skin friction for attached boundary lay-
ers that is as close to measurements as algebraic models. The model’s predictions
are far superior to those of algebraic models for separated flows, and the differ-
ential equation presents no serious numerical difficulties. Its only shortcoming
for incompressible flows appears to be in predicting the asymptotic spreading
rates for plane, round and radial jets. Also, as we will see in Chapter 5, the
model is quite inaccurate for flows with shock-induced separation at Mach num-
bers in excess of 3. Nevertheless, results of experience to date indicate that the
Spalart-Allmaras model is an excellent engineering tool for predicting properties
of turbulent flows from incompressible through transonic speeds, especially for
the aircraft applications it has been optimized for.

Two-equation models are complete. Until the 1990s, the k-e¢ model was the
most widely used two-equation model. It has been applied to many flows with
varying degrees of success. Unfortunately, it is even more inaccurate than the
Baldwin-Barth one-equation model for flows with adverse pressure gradient, and
that poses a serious limitation to its general utility. Because of its inability to
respond to adverse pressure gradient (see Table 4.9), the model is inaccurate
for separated flows. Its predictions for free shear flows are also a bit erratic.
The k-e model is extremely difficult to integrate through the viscous sublayer
and requires viscous corrections simply to reproduce the law of the wall for
an incompressible flat-plate boundary layer. No consensus has been achieved
on the optimum form of the viscous corrections as evidenced by the number of
researchers who have created low-Reynolds-number versions of the model (see
Subsection 4.9.1). While the model can be fine tuned for a given application,
it is not clear that this represents an improvement over algebraic models. The
primary shortcoming of algebraic models is their need of fine tuning for each
new application. Although saying the k-e model always needs such fine tuning
would be a bit exaggerated, it still remains that such tuning is too often necded.
Given all of these well-documented flaws, it remains a mystery to this author
why the model had such widespread use for nearly three decades.
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The k-w model, which has replaced the k-e model as the most widely-used
two-equation model, enjoys several advantages. Most importantly, the model
is significantly more accurate for two-dimensional boundary layers with both
adverse and favorable pressure gradient. Also, without any special viscous cor-
rections, the model can be easily integrated through the viscous sublayer. The
model accurately reproduces measured spreading rates for all five free shear flows
(Table 4.4). Finally, the model matches measured properties of separated flows
with no changes to the basic model and its closure coefficients. With viscous
corrections included, the k-w model accurately reproduces subtle features of tur-
bulence kinetic energy behavior close to a solid boundary and even describes
boundary-layer transition reasonably well.

Other two-equation models have been created, but they have had far less
use than k-w and k-¢ models. Before such models can be taken seriously, they
should be tested for simple incompressible boundary layers with adverse pressure
gradient. How many interesting flows are there, after all, with constant pressure?

The use of perturbation methods to dissect model-predicted boundary-layer
structure is perhaps the most important diagnostic tool presented in this chap-
ter. Experience has shown that a turbulence model’s ability to accurately predict
effects of pressure gradient on boundary layers can be assessed by analyzing
its defect-layer behavior. Specifically, models that faithfully replicate measured
variation of Coles’ wake-strength parameter, II, with the equilibrium (pressure-
gradient) parameter, 3, (see Figure 4.19) also closely reproduce boundary-layer
properties for non-equilibrium cases. Conversely, models that deviate signifi-
cantly from the II vs. 8, data predict large deviations from measurements for
non-equilibrium boundary layers.

While two-equation models, especially the k-w model, are more general than
less complex models, they nevertheless fail in some applications. On the one
hand, we will see in Chapter 5 that the k-w model with a stress limiter is very
reliable for describing boundary-layer separation induced by interaction with a
shock wave. On the other hand, in Chapter 6, we will see that two-equation
models are inaccurate for flows over curved surfaces. Also, two-equation models
as presented in this chapter cannot predict secondary motions in noncircular duct
flow. In both of these examples, the difficulty can be traced to the Boussinesq
eddy-viscosity approximation.
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Problems

4.1 We wish to create a new two-equation turbulence model. Our first variable is turbu-
lence kinetic energy, k, while our second variable is the “‘eddy acceleration,” a. Assuming
a has dimensions (length)/(time)?, use dimensional arguments to deduce plausible alge-
braic dependencies of eddy viscosity, vz, turbulence kinetic energy dissipation rate, €, and
turbulence length scale, £, upon k and a.

4.2 Starting with Equations (4.4) and (4.45), define ¢ = 3*wk and derive an “exact” w
equation.

4.3 Verify that the exact equation for the dissipation, ¢, is given by Equation (4.45). That
is, derive the equation that follows from taking the following moment of the Navier-Stokes
equation:

gu 8 .
6.'1,‘: % [N(Un)] =0

where A/ (u;) is the Navier-Stokes operator defined in Equation (2.26).

2v

4.4 Derive the exact equation for the enstrophy, w?, defined by

2

w' = ’

f
Wiy

% where  wi = €;;x0uk /0T,

That is, w; is the fluctuating vorticity. HINT: Beginning with the Navier-Stokes equation,
derive the equation for the vorticity, multiply by w;, and time average. The vector identity
w-vu=V (%u-u) — uX (Vxu) should prove useful in deriving the vorticity equation.

4.5 Beginning with the k-¢ model, make the formal change of variables ¢ = C,wk and
derive the implied k-w model. Express your final results in standard k-w model notation
and determine the implied values for «, 3, 8%, o, 0™ and o4 in terms of C,,, Ce1, Clez,
o and o..

4.6 Beginning with the k-w model and with o = o™ = 1/2 and o4 = 0, make the formal
change of variables ¢ = (*wk and derive the implied k-¢ model. Express your final
results in standard k-¢ model notation and determine the implied values for C,, Ce1, Ce2,
or and o, in terms of ¢, 8, 8%, o and o*. Assume fs = 1 and omit the stress limiter.

4.7 Simplify the k-¢, k-k€, k-kT and k-7 models for the log layer. Determine the value of
Karman’s constant, «, implied by the closure coefficient values quoted in Equations (4.49),
(4.57), (4.63) and (4.66). Make a table of your results and include the value 0.40 for the
k- model. NOTE: For all models, assume a solution of the form dU/dy = u. /(ky),

k=ul/,/C, and vy = Ku,y. Also, C, = Cp for the k-k{f model.

4.8 Simplify the k-e, k-k¢, k-k7T and k-7 models for homogeneous, isotropic turbulence.
Determine the asymptotic decay rate for k as a function of the closure coefficient values
quoted in Equations (4.49), (4.57), (4.63) and (4.66). Make a table of your results and
include the decay rate of ¢ 7?7 for the k-w model. (NOTE: You can ignore the (£/y)°
contribution to C,, for the k-k¢ model.)
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4.9 Beginning with Equations (4.83), derive the self-similar form of the k-w model equa-
tions for the mixing layer between a fast stream moving with velocity U; and a slow
- stream with velocity Uz. Omit the stress limiter so that v = k/w.

(a) Assuming a streamfunction of the form ¥(z, y) = Uiz F(y), transform the mo-
mentum equation, and verify that V is as given in Table 4.3.

(b) Transform the equations for k and w.

(c) State the boundary conditions on I/ and K for | — oo and for V(0). Assume
k--0as |y — oc.

(d) Verify that if w # 0 in the freestream, the only boundary conditions consistent
with the similarity solution are:

1
b—, 7 — +o0o
W=y U
Bo '’
4.10 Using Programs WAKE, MIXER and JET (see Appendix C), determine the spread-
ing rates for the five basic free shear flows according to the k- model with and without
the stress limiter. Compare your results in tabular form. HINT: The limiter is defined in
the array climit(j), whose value is set in Subroutine CALCS.

4.11 Derive Equation (4.145).
4.12 Demonstrate the integral constraint on Ui (n) in the defect-layer solution.

4.13 Determine the shape factor to O(u,/Ue) according to the defect-layer solution.
Express your answer in terms of an integral involving Ui (7).

4.14 Using Program DEFECT (sce Appendix C), determine the variation of Coles’ wake
strength, 11, as a function of the equilibrium parameter, 8, for Kok’s k-w model. Mod-
ify the program, noting that Kok’s model does not use the stress limiter and its closure
coeflicients are oo = 5/9, § = 3/40, 8" = 9/100, 0 = 1/2, 0™ = 2/3 and 04, = 1/2.
Compare your results to the correlation IT = 0.60+0.51 87 —0.01 8%. Do your computa-
tions for —0.35 < 87 < 20. HINT: You can accomplish all of the required modifications
in Subroutine START by changing the values of the closure coefficients and noting that
setting clim equal to zero turns the stress limiter off.

4.15 Using Program DEFECT (see Appendix C), determine the variation of Coles’ wake
strength, II, as a function of the equilibrium parameter, 7, for the Launder-Sharma k-¢
model with a stress limiter included. Make a graph that includes values obtained with
and without a stress limiter and the correlation IT = 0.60 + 0.51 7 — 0.01 82. Do your
computations for —0.35 < fr < 20. HINT: The limiter is defined in the array climit(),
whose value is set in Subroutine CALCS. Its algebraic form is identical for the k-w and
k-e¢ models, so all you have to do is activate it for the k-¢ model. Set the constant clim
equal to 1 to maximize the effect of the limiter.
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4.16 Consider a flow with freestream velocity U, past a wavy wall whose shape is

= lk sin ( ne )
U= g% Nk,
where k, is the peak to valley amplitude and Nk, is wavelength. The linearized incom-
pressible solution is U = Uy, + u’', V = v’ where

u = T—[-{ex (————2wy)sin(2ﬂ-y) U’—E-rg—ex (— 27ry)cos(21ry)
=N P\ N, Nk /' =N TP\ N, Nk,

Making an analogy between this linearized solution and the fluctuating velocity field in a
turbulent flow, compute the specific dissipation rate, w = €/{8"k). Ignore contributions
from the other fluctuating velocity component, w’.

4.17 For the k-w model, very close to the surface and deep within the viscous sublayer,
dissipation balances molecular diffusion in the w equation. Assuming a solution of the
form w = ww /(1 + Ay)?, solve this equation for w = wy, at y = 0. Determine the
limiting form of the solution as w,, — ©o.

4.18 Using Program SUBLAY (see Appendix C), determine the variation of the constant
C in the law of the wall for the k-w model with the surface value of w. Do your
computations with (nvisc = 0) and without (nvisc = 1) viscous modifications. Let w}
assume the values 1, 3, 10, 30, 100, 300, 1000 and oco. Be sure to use the appropriate
value for input parameter iruff. Present your results in tabular form. :

4.19 This problem studies the effect of viscous-modification closure coefficients for the
k-w model using Program SUBLAY (see Appendix C).

(a) Modify Subroutine START to permit inputting the values of Ry and R, (program
variables vk and rw). Determine the value of R, that yields a smooth-wall constant
in the law of the wall, C, of 5.0 for Rx = 4, 6, 8, 10 and 20.

(b) Now make provision for inputting the value of Rg (program variable rb). For
Ry = 6, determine the value of R, that yields C' = 5.0 when R = 2, 4, 8, and
12. Also, determine the maximum value of &+ for each case.

4.20 Consider incompressible Couette flow with constant pressure, i.e., flow between two
parallel plates separated by a distance H, the lower at rest and the upper moving with
constant velocity U.,.

Problems 4.20 and 4.21

(a) Assuming the plates are infinite in extent, simplify the conservation of mass and
momentum equations and verify that

dU 2

(V + V:r‘)(;r—y = T,
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(b) Now ignore molecular viscosity. What boundary condition on U is appropriate at
the lower plate?

(c) Introducing the mixing length given by
bomiz = Kky(l — y/H)
solve for the velocity across the channel. HINT: Using partial fractions:

1.1
y(1-y/H) vy (H-y)

Don’t forget to use the boundary condition stated in Part (b).

(d) Develop a relation between friction velocity, u-, and the average velocity,

1 H
e 7
Usvg = = /0 Uly) dy

(¢) Using the k- model, simplify the equations for &k and w with the same assumptions
made in Parts (a) and (b).

(f) Deduce the equations for k and w that follow from changing independent variables

from y to U so that
v = y2 o
Ydy T TdU
(8) Assuming k = u2/./B*, simplify the equation for w. NOTE: You might want to
use the fact that o/F"x2 = 3, — af*.

4.21 For incompressible, laminar Couette flow, we know that the velocity is given by

U= Uw%
where U,, is the velocity of the moving wall, y is distance form the stationary wall, and
H is the distance between the walls.

(a) Noting that the stress limiter is inactive for laminar flow, determine the maximum
Reynolds number,
Re H. = U w H c / 174

at which the flow remains laminar according to the high-Reynolds-number version
of the k-w model. To arrive at your answer, you may assume that

L 0<y< H/2
W= i 6v

—_— 2<y <

B(H—yp H2sysH

(b) Above what Reynolds number is w amplified?
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4.22 Using Program PIPE (see Appendix C), compute the skin friction for channel flow
according to the Baldwin-Barth and Spalart-Allmaras models. Compare your results
with the Halleen-Johnston correlation [Equation (3.139)] for 10° < Rexn < 10°. Also,
compare the computed velocity profiles for Rex = 13750 with the Mansour et al. DNS
data, which are as follows.

[w/(H2) TU/Um [ y/(H/2) [ U/Un [ y/(H/2) | U/Um
0.000 | 0.000 0.404 | 0.8%7 0.805 | 0.84
0.103 | 0717 0.500 | 0917 0902 | 0995
0207 | 0.800 0.602 | 0945 1.000 | 1.000
0305 | 0849 0710 | 0968

4.23 Using Program PIPE (see Appendix C), compute the skin friction for pipe flow
according to the Baldwin-Barth and Spalart-Allmaras models. Compare your results with
the Prandt] correlation [Equation (3.140)] for 10° < Rep < 10°. Also, compare the
computed velocity profiles for Rep = 40000 with Laufer’s data, which are as follows.

[y/(D/2) [ U/Um [ 4/D/2) | U/Uw [[ y/(D/2) | U/Um |

0.010 0.333 0.390 0.868 0.800 0.975
0.095 0.696 0.490 0.502 0.900 0.9%0
0.210 0.789 0.590 0.931 1.000 1.000
0.280 0.833 0.690 0.961

4.24 The object of this problem is to compare predictions of one- and two-equation models
with measured properties of a turbulent boundary layer with adverse Vp. The experiment
to be simulated was conducted by Schubauer and Spangenberg [see Coles and Hirst
(1969) — Flow 4800]. Use Program EDDYBL, its menu-driven setup utility, Program
EDDYBL_DATA, and the input data provided on the companion CD (see Appendix C).
Do 3 computations using the Baldwin-Barth model, the k-w model with viscous modifi-
cations and one of the k-e models and compare computed skin friction with the following
measured values.

[s® [ e [ s® | e [ s [ < |
2.000 | 3.39-10~ 2 || 10.333 | 2.06-10~3 | 17.000 | 0.94-107°
4500 | 2.94.10-3 {| 13.667 | 1.61-107° | 17.833 | 0.49.10—°
7.000 | 2.55-10°3 || 15.333 | 1.39-1073

4.25 The object of this problem is to compare predictions of one- and two-equation
models with measured properties of a turbulent boundary layer with adverse Vp. The
experiment to be simulated was conducted by Ludwieg and Tillman [see Coles and Hirst
(1969) — Flow 1200]. Use Program EDDYBL, its menu-driven setup utility, Program
EDDYBL_DATA, and the input data provided on the companion CD (see Appendix C).
Do 3 computations using the k-w, Baldwin-Barth and Jones-Launder models and compare
computed skin friction with the following measured values.

@ o J[s@m] o ]
0.782 | 292103 | 2282 [ 1.94.10 3
1.282 | 2491073 || 2,782 | 1.55.10°3
1.782 | 2.05-10—3
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4.26 The object of this problem is to compare predictions of one- and two-equation models
with measured properties of a turbulent boundary layer with adverse Vp. The experiment
to be simulated was conducted by Schubauer and Spangenberg [see Coles and Hirst
(1969) — Flow 4400]. Use Program EDDYBL, its menu-driven setup utility, Program
EDDYBL_DATA, and the input data provided on the companion CD (see Appendix C).
Do 3 computations using the kK~ model, one of the k-e¢ models and the Spalart-Alimaras
model and compare computed skin friction with the following measured values.

Ls® ] ¢ [s®[ ¢ Js®] ¢ |
1.167 | 3.40-10~° [[ 3.667 | 2.86.10 9% 6.167 | 1.33.10 9
2.000 | 3.17-10-3 || 4.500 | 2.38.10-3
2833 | 310103 || 5333 |} 1.97.10~3

4.27 The object of this problem is to compare predictions of one- and two-equation models
with measured properties of a turbulent boundary layer with adverse Vp. The experiment
to be simulated was conducted by Stratford [see Coles and Hirst (1969) — Fiow 5300].
Use Program EDDYBL, its menu-driven setup utility, Program EDDYBL_DATA, and
the input data provided on the companion CD (see Appendix C). Do 3 computations
using the k-w model, one of the k-e models and the Spalart-Allmaras model and compare
computed skin friction with the following measured values.

[s@® ] e [Ts®T] ¢ |
2907 [ 368-10 3 J[ 3531 | 0.55.10 9
2,999 | 2.07.10~3 || 4.103 | 0.53.10~3
3.038 | 0.99.10—3

4.28 The object of this problem is to predict the separation point for flow past a circular
cylinder with the boundary-layer equations, using the measured pressure distribution. The
experiment to be simulated was conducted by Patel (1968). Use Program EDDYBL
and its menu-driven setup utility, Program EDDYBL_DATA, to do the computations (see
Appendix C).

Problem 4.28

(a) Set freestream conditions to p;, = 2147.7 Ib/ft*, T, = 529.6° R, M., =0.144
(PT1, TT1, XMA); use an initial stepsize, initial arclength and final arclength
given by As = 0.001 ft, s; = 0.262 ft and sy = 0.785 ft (DS, SI, SSTOP); set the
initial boundary-layer properties so that c; = 0.00600, § = 0.006 ft, H = 1.40,
Res = 929, (CF, DELTA, H, RETHET); set the maximum number of steps to
1000 (IEND1); and set up for N = 47 points to define the pressure (NUMBER).
Use the following data to define the pressure distribution. The initial and final
pressure gradients are zero. Use zero heat flux at the cylinder surface. Finally, set
the curvature, R ™!, equal to 4 i . '
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(b)
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L8 | pe 0o/t | s(®) [ pe /D) || s(f) | p. (/i) ]
0.0000 | 2.147540.10% || 0.1500 | 2.116199-10° || 0.3500 | 2.055516-10°
0.0025 | 2.147528.10% || 0.1625 | 2.112205-10% || 0.3625 | 2.056591-103
0.0050 | 2.147491.10°% || 0.1750 | 2.107903.10% || 0.3750 | 2.058435.10°
0.0075 | 2.147429.-10% || 0.1875 | 2.103448.-10% || 03875 | 2.061661-10°
0.0100 | 2.147343-10% || 0.2000 | 2.098378-10% || 0.4000 | 2.066423.10°
0.0125 | 2.147233.10° || 0.2125 | 2.093155-10% || 0.4125 | 2.071954-103
0.0250 | 2.146314.10% 0.2250 | 2.087317-10% || 0.4250 | 2.079021.103
0.0375 | 2.144796.10% || 0.2375 | 2.081325-10° || 04375 | 2.085473-103
0.0500 | 2.142688.10° 0.2500 | 2.075334-10% || 04500 | 2.089161-103
0.0625 1 2.140018-10% || 0.2625 | 2.069189-10% || 04625 | 2.091004-103
0.0750 | 2.136807-10° 0.2750 | 2.064580-10° |} 0.4750 | 2.092080.10°
0.0875 | 2.134021-10° || 0.2875 | 2.060893-10% || 0.4875 | 2.092230.10%
0.1000 | 2.130641-10% [ 03000 | 2.058588-10% || 0.5000 | 2.092230-10%
0.1125 | 2.127261-10% || 0.3125 | 2.056898-10% || 0.6500 | 2.092230.10%
0.1250 | 2.123881-10% [[ 03250 | 2.055823.103 §| 0.7850 | 2.092230.10%
01375 | 2.120194.10% || 0.3375 | 2.055362.10%

Do three computations using the low-Reynolds-number k-w model, the Launder-
Sharma k-e¢ model and the Spalart-Allmaras model. The radius of the cylinder
is B = 0.25 ft, so that separation arclength, Ssep, is related to this angle by

Osep = T — Ssep/R.

4.29 Compute Driver and Seegmiller’s Rez = 37500 backstep flow using the Baldwin-
Lomax algebraic model. Use Program EDDY2C, its menu-driven setup utility, Program
EDDY2C DATA, and the input data provided on the companion CD (see Appendix C).

()

(b)

(©)

(d)

You must first run Program EDDYBL to establish flow properties at the upstream
boundary. Modify the supplied input-data file eddybl.dat, using trial and error to
adjust the “Maximum Arclength” (SSTOP) so that the Reynolds number based on
momentum thickness is 5000.

Modify the supplied input-data file eddy2c.dat for Program EDDY2C to run the
computation 1000 timesteps (NEND).

Make graphs of the “residual” and the value of reattachment length, z,./H, as
functions of timestep number.

Discuss the value of x,/H predicted by the Baldwin-Lomax model relative to the
measured value and the values predicted by the k-w and k-e models.

NOTE: This computation will take about 30 minutes of CPU time on a 3-GHz Pentium-D
microcomputer.

4.30 Compute Jovic’s Reny = 5000 backstep flow using the Baldwin-Lomax algebraic
model. Use Program EDDY2C, its menu-driven setup utility, Program EDDY2C _DATA,
and the input data provided on the companion CD (see Appendix C).

(a)

(b)

You must first run Program EDDYBL to establish flow properties at the upstream
boundary. Modify the supplied input-data file eddybl.dar, using trial and error to
adjust the “Maximum Arclength” (SSTOP) so that the Reynolds number based on
momentum thickness is 609.

Modify the supplied input-data file eddy2c.dat for Program EDDY2C to run the
computation 10000 timesteps (NEND).
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(c) Make graphs of the “residual” and the value of reattachment length, . /H, as
functions of timestep number.

(d) Discuss the value of ./ H predicted by the Baldwin-Lomax model relative to the
measured value and the value predicted by the k-.v model.

NOTE: This computation will take about 3 hours of CPU time on a 3-GHz Pentium-D
microcomputer.
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Chapter 5

Effects of Compressibility

For flows in which compressibility effects are important, we must introduce an
equation for conservation of energy and an cquation of state. Just as Reynolds
averaging gives rise to the Reynolds-stress tensor, so we expect that similar
averaging will lead to a turbulent heat-flux vector. We should also expect that
new compressibility-related correlations will appear throughout the equations of
motion. These are important issues that must be addressed in constructing a
turbulence model suitable for application to compressible flows, which can be
expected to apply to constant-property (low-speed) flows with heat transfer.

We begin with a discussion of observations pertaining to compressible tur-
bulence. Then, we introduce the Favre mass-averaging procedure and derive the
mass-averaged equations of motion. Next, we demonstrate an elegant turbulence-
modeling development for the compressible mixing layer. We follow this analysis
with an application of perturbation methods to the compressible log layer. We
then apply several models to attached compressible boundary layers, including
effects of pressure gradient, surface cooling and surface roughness. The chapter
concludes with application of various models to shock-separated flows,

5.1 Physical Considerations

By definition, a compressible flow is one in which significant density changes
occur, even when pressure changes are small. It includes low-speed flows with
large heat-transfer rates. Models for high-speed flows seem to fit the limited data
quite well (perhaps with the exception of combusting flows). Generally speaking,
compressibility has a relatively small effect on turbulent eddies in wall-bounded
flows. This appears to be true for Mach numbers up to about 5 (and perhaps as
high as 8), provided the flow doesn’t experience large pressure changes over a

239
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short distance such as we might have across a shock wave. At subsonic speeds,
compressibility effects on eddies are usually unimportant for boundary layers pro-
vided T, /T. < 6. Based on these observations, Morkovin (1962) hypothesized
that the effect of density fluctuations on the turbulence is small provided they
remain small relative to the mean density. So, Gatski and Sommer (1998) have
confirmed the hypothesis for a Mach 2.55 flat-plate boundary layer, showing that
DNS turbulence statistics match those of an incompressible boundary layer. This
is a major simplification for the turbulence modeler because it means that, in
practice, we need only account for the nonuniform mean density in computing
compressible, shock-free, non-hypersonic turbulent flows.

There are limitations to the usefulness of Morkovin’s hypothesis even at
non-hypersonic Mach numbers. For example, it is not useful in flows with
significant heat transfer or in flows with combustion because p'/p is typically
not small. Also, density fluctuations generally are much larger in free shear
flows, and models based on Morkovin’s hypothesis fail to predict the measured
reduction in spreading rate with increasing freestream Mach number for the
compressible mixing layer [e.g., Papamoschou and Roshko (1988)]. As we will
see in Section 5.5, the level of p’/p for a boundary layer at Mach 5 is comparable
to the level found in a mixing layer at Mach 1. However, in addition, there seem
to be qualitative changes in mixing-layer structure as Mach number increases.

On dimensional grounds, we expect the velocity in a turbulent boundary layer
to depend, at a minimum, upon basic fluid properties such as Prandtl number,
Pr,, and specific-beat ratio, . We also expect it to depend upon the following
three dimensionless groupings:

UrY q U
“+ T -+ __ w - T
Yy = ; i =gy M, = — (5.1)
Vy PwGpTLTTw Qo
Y ~ i v e e e
Sublayer scaled Dimensgionless Turbulence
distance heat transfer Mach number

where subscript w denotes surface value, g is heat flux, ¢, is specific-heat coef-
ficient at constant pressure, 7" is temperature and o is sound speed. Based on the
mixing-length model and assuming that, in analogy to the incompressible case,

oU - Tw/p 52)

oy T ky

where p now depends upon y. Van Driest (1951) argued' that by rescaling the
velocity according to

w1 [sin_l (2,42(0’/%) —B) PR ( B (53)
u Al VB? + 442 VB? 1 4A2 =

!'The Van Driest argument also requires assuming the turbulent Prandtl number [defined in Equa-
tion (5.54)] is constant.
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where A and B are functions of ¢, and M, [see Equation (5.101) below], the
velocity is

u*

1 +
= s nt’ny +C (5.4)
Equation (5.4) is the compressible law of the wall. Correlation of measurements
shows that x and C are nearly the same as for incompressible boundary layers
[Bradshaw and Huang (1995)]. In principle, however, C is a function of M,
and ¢7; since it includes density and viscosity effects in the viscous wall region.

Section 5.6 provides additional detail that explains why we should expect
the velocity to scale according to Equation (5.3) in a compressible boundary
layer. In general, the compressible law of the wall correlates experimental data
for adiabatic walls reasonably well (Section 5.7). It is less accurate for non-
adiabatic walls, especially for very cold walls (probably because C' varies with
gi» although data are scarce). An analogous variation of temperature with these
parameters can be deduced that is satisfactory for low-speed flows. However,
its use is limited because of sensitivity to pressure gradient, even in low-speed
flows. Bradshaw and Huang (1995) provide additional detail.

As a final observation, note that the difficulty in predicting properties of the
compressible mixing layer is reminiscent of our experience with free shear flows
in Chapters 3 and 4. That is, we find again that the seemingly simple free shear
flow case is more difficult to model than the wall-bounded case. -

3.2 Favre Averaging

In addition to velocity and pressure fluctuations, we must also account for den-
sity and temperature fluctuations when the medium is a compressible fluid. If
we use the standard time-averaging procedure introduced in Chapter 2, the mean
conservation equations contain additional terms that have no analogs in the lam-
inar equations. To illustrate this, consider conservation of mass. We write the
instantaneous density, p, as the sum of mean, 5, and fluctuating, p’, parts, i.e.,

p=p+p (5.5)

Expressing the instantaneous velocity in the usual way [Equation (2.4)], substi-
tuting into the continuity equation yields

3 2 i}
5P+ P) + 53— (pUi + p'Us + pui + p'u) = 0 (5.6)

After time averaging Equation (5.6), we arrive at the Reynolds-averaged conti-
nuity equation for compressible flow, viz.,
Op o

é? e 855'1'

(pUs + ;) =0 .7)
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Some authors refer to this as the primitive-variable form of the continuity
equation. Note that in order to achieve closure, an approximation for the correla-
tion between p’ and ) is needed. The problem is even more complicated for the
momentum equation where the Reynolds-stress tensor originates from time aver-
aging the product pu;u; that appears in the convective acceleration. Clearly, a
triple correlation involving o', u;, and v appears, thus increasing the complexity
of establishing suitable closure approximations.

The problem of establishing the appropriate form of the time-averaged equa-
tions can be simplified dramatically by using the density-weighted averaging
procedure suggested by Favre (1965). That is, we introduce the mass-averaged
velocity, u;, defined by

1 | et
4; = — lim — p(x, Tu;(x, 7) dr (5.8)

pT—oo T J,

where p is the conventional Reynolds-averaged density. Thus, in terms of con-
ventional Reynolds averaging, we can say that

Pl = Py (5.9)

where an overbar denotes conventional Reynolds average. The value of this aver-
aging process, known as Favre averaging, becomes obvious when we expand the
right-hand side of Equation (5.9). Performing the indicated Reynolds-averaging
process, there follows

pit; = pU; + 0] (5.10)
Inspection of Equation (5.7) shows that conservation of mass can be rewritten as
op 0
— plt;) = 5.11
at * 6$-,; (,OU;) 0 ( )

This is a remarkable simplification as Equation (5.11) looks just like the laminar
mass-conservation equation. What we have done is treat the momentum per unit
volume, pu;, as the dependent variable rather than the velocity. This is a sensible
thing to do from a physical point of view, especially when we focus upon the
momentum equation in the next section. That is, the rate of change of momentum
per unit volume, not velocity, is equal to the sum of the imposed forces per unit
volume in a flow.

When we use Favre averaging, it is customary to decompose the instantancous
velocity into the mass-averaged part, @;, and a fluctuating part, v/, wherefore

Uy = U + ’U,:;’ (5.12)

Now, to form the Favre average, we simply multiply through by p and do a time
average in the manner established in Chapter 2. Hence, from Equation (5.12)
we find

P = piiy + pul’ (5.13)
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But, from the definition of the Favre average given in Equation (5.9), we see
immediately that, as expected, the Favre average of the fluctuating velocity, v/,
vanishes, i.e.,

pull =0 (5.14)

By contrast, the conventional Reynolds average of «! is not zero. To sce this,
note that

u;’ = U; — t; (515)

Hence, using Equation (5.10) to eliminate %,

v
wf =y — U — £l (5.16)
o
Therefore, performing the conventional Reynolds average, we find
_— p’u{
u = — ﬁ‘ #£0 (5.17)

As a final comment, do not lose sight of the fact that while Favre averaging
eliminates density fluctuations from the averaged equations, it does not remove
the effect the density fluctuations have on the turbulence. Consequently, Favre
averaging is a mathematical simplification, not a physical one.

5.3 Favre-Averaged Equations

For motion in a compressible medium, we must solve the equations governing
conservation of mass, momentum and energy. The instantaneous equations are
as follows:

ap a _
o _ e} P T 8p F _Btjz-
gg(pu,,) + a—a:j(p’lt‘-_. d;) = alEi F (93:j (519)

ot lﬂ (e e Eumg)] - Oz, [,Ouj (h s Emuz)] = 3z, (uiti;) B (5.20)

3 3
where e is specific internal energy and h = e + p/p is specific enthalpy. For
compressible flow, the viscous stress tensor, £;;, involves the second viscosity, ,
as well as the conventional molecular viscosity, ;. Although it is not necessary
for our immediate purposes, we eventually must specify an equation of state. For
gases, we use the perfect-gas law so that pressure, density and temperature are

related by
p = pRT (5.21)
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where R is the perfect-gas constant. The constitutive relation between stress and
strain rate for a Newtonian fluid is

tii = 2pss; + gg-z_taﬁ (5.22)

where s;; is the instantaneous strain-rate tensor [Equation (2.19)] and 4;; is the
Kronecker delta. The heat-flux vector, g;, is usually obtained from Fourier’s law

so that
oT

;= —K— 5.23
where « is thermal conductivity. We can simplify our analysis somewhat by
introducing two commonly used assumptions. First, we relate second viscosity

to u by assuming
2
(=—-2n (5.24)

This assumption is correct for a monatomic gas, and is generally used for all
gases in standard CFD applications. Assuming Equation (5.24) holds in general
guarantees t;; = 0 so that viscous stresses do not contribute to the pressure, even
when s;; = Ou;/0x; # 0. This is tidy, even if not necessarily true. Second,
we assume the fluid is calorically perfect so that its specific-heat coefficients are
constant, and thus the specific internal energy, e, and specific enthalpy, h, are

g gyl and h=c,T (5.25)

where ¢, and ¢, are the specific-heat coefficients for constant volume and pres-
sure processes, respectively. Then, we can say that
oT oh
G il (5.26)
0z ; Pr, Ox;

where Pr, is the laminar Prandtl number defined by

pr, = 2H (5.27)
A

In order to mass average the conservation equations, we now decompose the
various flow properties as follows.

i = U +ul )

p = pty

p = P+yp

hoo= h+n" o (5.28)
e g é«+erf

7 j; 4T

qj - qu + q_; F.
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Note that we decompose p, p and g; in terms of conventional mean and fluc-
tuating parts. Substituting Equations (5.28) into Equations (5.18) — (5.21) and
performing the mass-averaging operations, we arrive at what are generally re-
ferred to as the Favre (mass) averaged mean conservation equations.

op a

B+ g (9) =0 (5.29)

il ;i oF ‘9? [‘ _"_‘] (5.30)

0, . 0 _ 77 77
3t(puz) + a—m;(ﬂujuz) = o + oz, tji — puju;

a | _(. 4 puiul O | __ [+ 1wy - pulu?
—_ - L - h Rk Yo
| (e B) 0 P 2 [ (o ) 5,2

. - Liya I oy 4 _]___ L

—F—ég:; [’&1 (t_i,_j - m)] (531

P = pRT (5.32)

Equations (5.29) and (5.32) are identical to their larninar counterparts and Equa-
tion (5.30) differs only by appearance of the Favre-averaged Reynolds-stress
tensor, viz.,

pTi; = —puuf (5.33)

As in the incompressible case, the Favre-averaged Ti; 1S @ symmetric tensor.

Equation (5.31), the Favre-averaged mean-energy equation for total energy,
i.e., the sum of internal energy, mean-flow kinetic energy and turbulence kinetic
energy has numerous additional terms, each of which represents an identifiable
physical process or property. Consider first the double correlation between u/
and itself that appears in each of the two terms on the left-hand side. This is
the kinetic energy per unit volume of the turbulent fluctuations, so that it makes
sense to define

pk = Emtg’u;’ (5.34)

Next, the correlation between uj and A" is the turbulent transport of heat.
In analogy to the notation selected for the molecular transport of heat, we define

gr; = pujh” (5.35)

The two terms ¢;;u and pu u;'u} on the right-hand side of Equation (5.31)
correspond. to molecular diffusion and turbulent transport of turbulence kinetic
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energy, respectively. These terms arise because the mass-averaged total enthalpy
appearing in the convective term of Equation (5.31) is the sum of mass-averaged
enthalpy, mean kinetic energy and turbulence kinetic energy. They represent
transfers between mean energy and turbulence kinetic energy that naturally arise
when we derive the Favre-averaged turbulence kinetic energy equation. The
simplest way to derive the equation for k is to multiply the primitive-variable
form of the instantaneous momentum equation by v} and time average.

Bu,- Buz Bp ot i

ul! == + pulluj— = —uf—— + ull =2

Pl Gy TP 7 Oz  Ox; * Oz

As in Chapter 2, the most illuminating way to carry out the indicated time-
averaging operations is to proceed term by term, and to use tensor notation for all

derivatives. Proceeding from left to right, we first consider the unsteady term.

(5.36)

[Ju;’ui,t — n(,&i_i_uu)t
= p,uz uzt“l'pu” H
o 0
> 5;<ﬁk)~ %u;*u;fgt’f | (537)

Turning now to the convective term, we have the following.

pufujug ;= pul[(G; + uf)di; + usul ]
—_ pu uJU3 J + p/u;;fu-” ﬁl .? + p?LJ ”I :'fj
= —pTiu; + pui(Fuiul)
= thJ ut 3 S (pu.? sU ” ”) = lu"u“(mﬁj),j
= —pTijti,; + (,ouj suj'uy + ,ou;,’%u;’u") ; ul ”(puj)
Ot Is) ———
— _ﬁTij5§+8m (pu3k+mffl 1 n) '_%uu n (PUJ)
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The pressure-gradient term simplifies immediately as follows.
— e —OP 0 [— ou’’
u’ —u”P +'u” by mmay ( "u,’.') —p'= 5.39
p% p?, 16.{32_{_322@' p i paxt ( )

Finally, the viscous term is simply rewritten as
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——_ 08—\ . oull
uitji; = 5z; (t:.iiuf) ~lige (5.40)

Thus, substituting Equations (5.37) through (5.40) into Equation (5.36), we
arrive at the Favre-averaged turbulence kinetic energy equation. In arriving
at the final result, we make use of the fact that the sum of the last terms on
the right-hand sides of Equations (5.37) and (5.38) vanish since their sum is
proportional to the two terms appearing in the instantaneous continuity equation.
Additionally, to facilitate comparison with the incompressible turbulence kinetic
energy equation [Equation (4.4)], we use the Favre-averaged continuity equation
to rewrite the unsteady and convective terms in non-conservation form. The
exact equation is as follows.

ok . Ok _ Oy oul! 0
=7 - R — S t ?:____3 [t o " 1 " h' }
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i 833@‘ p B.T,-;_ ’ i

Pressure Work Pressure Dilatation

Comparing the mean energy Equation (5.31) with the turbulence kinetic en-
ergy Equation (5.41), we sce that indeed the two terms ¢;;u/ and puy 3uiu; on
the right-hand side of the mean-energy equation are Molecular lefuswn and
Turbulent Transport of turbulence kinetic energy. Inspection of the turbulence
kinetic energy equation also indicates that the Favre-averaged dissipation rate

is given by

ou!! 1 ou’! oul —
pe = tjimt = =ty [ 2ot + =L | =1 5.42
pe 3‘83::,- 2tJ (ij i 8:1:3') 453, i ( )

where s;’; is the fluctuating strain-rate tensor. This is entirely consistent with the
dcﬁmtmn of dissipation for incompressible flows given in Equation (4.6).

Comparison of Equation (5.41) with the incompressible equation for k¥ [Equa-
tion (4.4)] shows that all except the last two terms, i.e., the Pressure Work and
Pressure-Dilatation terms, have analogs in the incompressible equation. Both
of these terms vanish in the limit of incompressible flow with zero density fluc-
tuations. The Pressure Work vanishes because the time average of v is zero
when density fluctuations are zero. The Pressure-Dilatation term vanishes be-
cause the fluctuating field has zero divergence for incompressible flow. Hence,
Equation (5.41) simplifies to Equation {(4.4) for incompressible flow with zero
density fluctuations.
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Note that the turbulence kinetic energy production, p7;;01; /0 ;, and pressure
correlation terms represent a transfer from mean kinetic energy to turbulence
kinetic energy. Also, dissipation is a transfer from turbulence kinetic energy
to internal energy. Thus, since these transfers simply redistribute energy, they
must cancel in the overall energy-conservation equation. Consequently, only
the two terms involving spatial transport of turbulence kinetic energy appear in
Equation (5.31).

Using a similar derivation (we omit the details here for the sake of brevity),
the Favre-averaged Reynolds-stress equation assumes the following form:

o Io) _ Ou; ott;

T (BTij) + Bze (PlxTi;) = —PTik 6:::; — pT. e Bar + pei; — pll;
s,
+ % [— (tkju;’ + tkt—u;-’) +- ,‘o“C-‘,;jk]
oFP 3P
+ “':'87 +u d’i"‘ (5.43)
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pChjk = pujuijuy + p'udje + p’u? ik (5.46)

Taking advantage of the definitions given in Equations (5.33), (5.34), (5.35)
and (5.42), we can summarize the Favre-averaged mean equations and turbulence
kinetic energy equation in conservation form.
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P = pRT (5.51)

The quantities £ and H are the total energy and total enthalpy, and include
the kinetic energy of the fluctuating turbulent field, viz.,

E=é¢+iui+k and H=h+ La;a+k (5.52)

5.4 Compressible-Flow Closure Approximations

As discussed in the preceding section, in addition to having variable mean den-
sity, p, Equations (5.43) through (5.52) reflect effects of compressibility through
various correlations that are affected by fluctuating density. For all but stress-
transport models, diffusivity-type closure approximations are usually postulated
for the mass-averaged Reynolds-stress tensor and heat-flux vector. Depending
on the type of turbulence model used, additional closure approximations may be
needed to close the system of equations defining the model.

This section briefly reviews some of the most commonly used closure ap-
proximations for compressible flows. Because of the paucity of measurements
compared to the incompressible case, and the additional complexities attending
compressible flows, far less is available to guide development of closure ap-
proximations suitable for a wide range of applications. As a result, modeling of
compressibility effects is in a continuing state of development as we begin the
twenty-first century. The closure approximations discussed in this, and follow-
ing, sections are those that have either stood the test of time or show the greatest
promise.

Before focusing upon specific closure approximations, it is worthwhile to
cite important guidelines that should be followed in devising compressible-flow
closure approximations. Adhering to the following items will lead to the simplest
and most elegant models.

1. All closure approximations shouid approach the proper limiting value for
Mach number and density fluctuations tending to zero.

2. All closure terms should be written in proper tensor form, e.g., not depen-
dent upon a specific geometrical configuration.

3. All closure approximations should be dimensionally consistent and invari-
ant under a Galilean transformation.

It should be obvious that Items 2 and 3 apply for incompressible flows as
well. In practice, Galilean invariance seems to be ignored more often than any
other item listed, especially for compressible flows. Such models should be



250 CHAPTER 5. EFFECTS OF COMPRESSIBILITY

rejected as they violate a fundamental feature of the Navier-Stokes equation,
and are thus physically unsound. We must be aware, for example, that total
enthalpy, H, includes the kinetic energy and is not Galilean invariant, so its use
as a dependent variable requires caution. For instance, it must not be used in
diffusivity format in the manner that 4 is used in Equation (5.54) below.

5.4.1 Reynolds-Stress Tensor

For zero-, one- and two-equation models, nearly all researchers use the Boussi-
nesq approximation with suitable generalization for compressible flows. Specifi-
cally, denoting the eddy viscosity by ur, the following form is generally assumed.

_ — 104 2 _ _
PTi; = “‘P‘U,;"u;f = 2}.57- (Sz - g'é*a—’fts“) —= gﬂkéw (353)

The most important consideration in postulating Equation (5.53) is guaranteeing
that the trace of 7;; is —2k. Note that this means the “second eddy viscosity”
must be —Z 4. [recall Equation (5.24)].

5.4.2 Turbulent Heat-Flux Vector

The most commonly used closure approximation for the turbulent heat-flux vec-
tor, qr,, follows from appealing to the classical analogy [Reynolds (1874)] be-
tween momentum and heat transfer. It is thus assumed to be proportional to the
mean temperature gradient, so that

_ BrCp aT Uy oh

= 5.54
Pry 8z Pry Ox; ()

ar, = P =

where Pr; is the turbulent Prandtl number. A constant value for Pr. is often
used and this is usually satisfactory for shock-free flows up to low supersonic
speeds, provided the heat transfer rate is not too high. The most common values
assumed for Pr, are 0.89 or 0.90, in the case of a boundary layer. Heat-transfer
predictions can usually be improved somewhat by letting Pr,. vary through the
boundary layer. Near the edge of a boundary layer and throughout a free shear
layer, a value of the order of 0.5 is more appropriate for Pr;.

5.4.3 Molecular Diffusion and Turbulent Transport

If a zero-equation model is used, the %ﬁk(ﬁj contribution in Equation (5.53) is
usually ignored as are the molecular diffusion, t;;u}, and turbulent transport,
pw Tuf/ul, terms appearing in the mean-energy equation. Some researchers
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ignore these terms for higher-order models as well. This is usually a good ap-
proximation for flows with Mach numbers up to the _supersonic range, which
follows from the fact that pk < P (and hence k < %) in most flows of engi-

neering interest. However, at hypersonic speeds, it is entirely possible to achieve
conditions under which pk is a significant fraction of P. To ensure exact con-
servation of total energy (which includes turbulence kinetic energy), additional
closure approximations are needed. The most straightforward procedure for one-
equation, two-cquation and stress-transport models is to generalize the low-speed
closure approximations for the molecular diffusion and turbulent transport terms.
The most commonly used approximation is;

ok
tjiug — puy juiul = (# + gf‘) 7 (5.55)
2

5.4.4 Dilatation Dissipation

To understand what “dilatation dissipation” is, we must examine the turbulence-
energy dissipation rate more closely. Recall from Equation (5.42) that

ou!
pe = t;;— 5.56
P 2 BiEj ( )
Hence, in terms of the instantaneous strain-rate tensor, s; j» we have
== t 2 1 -
pe = i {25587, — 3 Uk kUi (5.57)

Assuming that the correlation between velocity-gradient fluctuations and kine-
matic viscosity fluctuations is negligible, we can rewrite this equation as

2
pe = [2;)3;’3 8 — gpuk R ;’{f (5.58)

In terms of the fluctuating vorticity, w’, there follows

2
ﬁ(". =¥ [,UI'-U,:!W” s 2pua \J _;r i Epuz i z] (5'59)

Finally, we can say w ;uj;, =~ (ui; 2, which is exactly true for homogeneous
turbulence, and is a very good approximation for high-Reynolds-number, inho-
mogeneous turbulence [see, for example, Tennekes and Lumley (1983)]. Hence,

we conclude that the dissipation can be written as

pe = pes + peq (5.60)
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where
f14

pes =0 plwl!  and  peg = %17 pul ul; (5.61)
Thus, we have shown that the compressible turbulence dissipation rate can
logically be written in terms of the fluctuating vorticity and the divergence of
the fluctuating velocity. Equivalently, we could have written the fluctuating
velocity as the sum of a divergence-free and a curl-free component. At high
Reynolds number, these components presumably are uncorrelated (again, an exact
result for homogeneous turbulence), and Equation (5.59) would follow directly.
The quantity €, is known as the solenoidal dissipation, while ¢4 is known as
the dilatation dissipation. Clearly, the latter contribution is present only for
compressible flows.
Based on observations from some older Direct Numerical Simulations (DNS),
Sarkar et al. (1989) and Zeman (1990) postulate that the dilatation dissipation
should be a function of turbulence Mach number, M;, defined by

M? = 2k/a? (5.62)

where a is the speed of sound. They further argue that the k& and e equations
should be replaced by

dk

p— = —ples+eq)+ - (5.63)
dit
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P —Ceapeifk+--- (5.64)

where Ceq is a closure coefficient. Only the dissipation terms are shown explic-
itly in Equations (5.63) and (5.64) since no changes occur in any other terms.
Particularly noteworthy, both Sarkar and Zeman postulate that the equation for
€s is unaffected by compressibility. The dilatation dissipation is further assumed
to be proportional to ¢, so that they say

EdIE*F(Mf_) €g (565)

where £* is a closure coefficient and F'(M,) is a prescribed function of M,. The
Sarkar and Zeman formulations differ in the value of £* and the functional form
of F'(M;), which we will discuss in Section 5.5.

Interestingly, while both Sarkar and Zeman arrive at similar formulations,
their basic postulates are fundamentally different. Sarkar et al. postulate that €4
“varies on a fast compressibility time scale relative to €;.” As a consequence,
they conclude that dilatation dissipation increases with M; in a monotone man-
ner. By contrast, Zeman postulates the existence of eddy shocklets, which ar¢
principally responsible for the dilatation dissipation. His analysis predicts that a
threshold exists below which dilatation dissipation is negligible.



5.4. COMPRESSIBLE-FLOW CLOSURE APPROXIMATIONS 233

Although their arguments seem plausible when taken at face value, the
premises are flawed. Most importantly, both draw from early DNS results for
low-Reynolds-number, initially-isotropic turbulence subjected to strong compres-
sion or shear, where both dilatation dissipation and pressure-dilatation (see the
next subsection) are significant. As pointed out by Ristorcelli et al. (1995),
dilatation fluctuations occur mainly in the large eddies, where density fluctua-
tions are large and viscous effects are small. That is, the mean-square dilatation
fluctuation is virtually independent of Reynolds number, so ¢; varies as 1/Re
and is therefore small at real-life Reynolds numbers.

DNS results for compressible thin shear layers [Coleman et al. (1995) and
Huang et al. (1995) for channel flows, and Vreman et al. (1996) for mixing layers]
show that dilatation dissipation is small or negligible, even in the presence of
eddy shocklets and even at the fairly low Reynolds numbers of recent DNS
studies. The channel results are consistent with the fact that compressibility
corrections are not needed for boundary-layer flows. These DNS results also
show insignificant pressure dilatation (see next subsection).

Nevertheless, the “dilatation-dissipation” corrections postulated by Zeman
and Sarkar can, with adjustment of empirical coefficients, successfully correlate
the decrease in mixing-layer growth rate with increasing Mach number. With
care, they can also be arranged to have the desired lack of influence on non-
hypersonic boundary layers, in which M; is generally lower at given M, because
k/UZ2 is smaller than in mixing layers. Evidently they should be regarded as
completely empirical corrections rather than true models of dilatation dissipation.
We return to the question of what these compressibility corrections really mean
after discussing the other explicit compressibility terms in the turbulence kinetic
energy equation, namely pressure diffusion and pressure dilatation.

5.4.5 Pressure Diffusion and Pressure Dilatation

Section 4.1 discusses the lack of information regarding diffusion by pressure
fluctuations in incompressible flows. So little is known that it is simply ignored;
by implication, it is lumped in with triple-product turbulent transport. Even less is
known for compressible flows. However, given the fundamentally different role
that pressure plays in a compressible medium relative to its essentially passive
role at low speeds, we might reasonably suspect that ignoring pressure diffusion
and pressure dilatation might lead to significant error. However, DNS research
shows that, as with dilatation dissipation, these terms are very small for both
mixing layers and boundary layers. As in the case of dilatation dissipation,
the early homogeneous-strain simulations were misleading. As Zeman (1993)
shows, pressure-dilatation is large in flows with a large ratio of turbulence-
energy production to dissipation — typical of strongly-strained initially-isotropic
flows. In thin shear layers, production and dissipation are roughly the same and
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pressure-dilatation is small. (This is not a Reynolds-number effect: pressure-
dilatation is determined by the large eddies, like mean-square dilatation, and
does not involve viscosity.) Hence, models for these pressure terms, to the extent
that they improve predictions, are ad hoc in nature and do not reflect the true
physics of compressible turbulence.

New proposals, especially for the pressure-dilatation mean product, have been
made by many authors {Sarkar et al. (1991,1992), Zeman (1991,1993) and Ristor-
celli et al. (1993,1995)], but none has received general acceptance. For example,
Sarkar (1992) proposes that the pressure dilatation can be approximated as

ou’! %

L
p"' 6;[;. = agﬁﬁ;j %%Mg + agﬁer (5.66)
T J

where M, is the turbulence Mach number defined in Equation (5.62). The
closure coefficients o and a3 are given by

az = 0.15 and 3 = 0.2 (567)

The model has been calibrated for a range of compressible-flow applications
including the mixing layer and attached boundary layers (but apparently not with
respect to DNS results for these flows).

5.4.6 Pressure Work

The pressure work term, u7 P; (or u/P; + E?P,i for stress-transport models),
arises because the time average of u/ does not vanish. It is proportional to
the density/velocity correlation p'u), and illustrates how Favre averaging does
not completely eliminate the need to know how these fluctuating properties are
correlated.

Wilcox and Alber (1972) postulate an empirical model for this term that
improves two-equation model predictions for hypersonic base flows. Oh (1974)
proposes a closure approximation postulating existence of “eddy shocks” and
accurately simulates compressible mixing layers with a one-equation turbulence
model. Neither model is entirely saiisfactory however as they both involve the
mean velocity in a manner that violates Galilean invariance of the Navier-Stokes
equation.

More recently, Zeman (1993) and Ristorcelli (1993) have argued that the time
average of u; for boundary layers behaves as

27 Mk . op
t — i3

pe 0z

Although corroborating measurements to verify this model are essentially nonex-

istent, we can at least say that it is dimensionally correct and does not violate
Galilean invariance.

(5.68)
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5.4.7 k-w Model Equations for Compressible Flows

To summarize the ramifications of the closure approximations discussed above,
it is instructive at this point to combine them into a closed set of equations
for compressible flows. Since many of the compressible-flow applications to
follow will be done with the k-w model, we will focus on its equations. The
Favre-averaged equations for conservation of mass, momentum, energy and the
equations defining the k-w model are as follows.

Mass Conservation:

% R 81 (Pt;) =0 (5.69)
Momentum Conservation:
o, . a , _ apP J _
3¢ (PEi) + aj(ﬂ“jui) =05t 5 (i + £75i] (5.70)

Energy Conservation:
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Molecular and Reynolds-Stress Tensors:
- & - = 2. ~ 10u
tij =2uSi;,  Prij = 2urSi; — Spk6i;, Sy = Sij — w06 (5.72)

Eddy Viscosity:

Turbulence Kinetic Energy:
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Specific Dissipation Rate:
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Closure Coefficients:
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There are a few subtle points worthy of mention regarding the precise form of
these equations, which apply to both compressible and incompressible flows.

e The energy conservation Equation (5.71) ensures conservation of total en-
ergy, £ = p(é + 14,4, + k), which includes the kinetic energy of the
turbulence. Consequently, the equation’s diffusion term includes explicit
appearance of molecular and turbulent diffusion of k.

e The turbulence kinetic energy Equation (5.74) contains no special com-
pressibility terms involving pressure work, diffusion or dilatation.

e Although a dilatation-dissipation modification to the k equation improves
compressible mixing-layer predictions (see Section 5.5), the same modifi-
cation has a detrimental effect on shock-separated flow predictions. Hence,
it is omitted from the &k equation for general applications.

e The stress-limiter modification [Equation (5.73)] uses the zero-trace ver-
sion of the mean strain-rate tensor, viz., S;; = Sij — ég‘;: 8. Some
turbulence-model researchers prefer the magnitude of the vorticity vector
in place of (25;;5;,)!/2. Using the magnitude of the vorticity with 0.95 re-
placing 7/8 is satisfactory for shock-separated flow predictions up to Mach
3 (and possibly a bit higher). However, numerical experimentation with
this k-w model has shown that it has a detrimental effect on hypersonic
shock-induced separation, some (but not all) attached boundary layers and

some free shear flows (especially the mixing layer).

e The round-jet parameter, ., is computed with S'ij = Sy =

(2001), is Galilean invariant. This is necessary because using Sy; or Ski
yields undesired effects in two-dimensional compressible flows.

o All of the closure coefficients in the compressible-flow version of the k-w
model are identical to those appearing in the incompressible-flow version
[see Equations (4.39) - (4.41)].
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5.5 Mixing-Layer Compressibility Corrections

The decrease in mixing-layer growth rate with increasing Mach number has
been known for many years [e.g., Birch and Eggers (1972)]. This decrease is
not likely to be the result of density changes across the layer. We know from
the measurements of Brown and Roshko (1974) that low-speed mixing layers
between flows of two different gases show only a moderate effect of density ratio.
Most researchers believe no current turbulence model predicts the Mach-number
dependence of spreading rate without an explicit compressibility correction.

We have seen above that the explicit compressibility terms in the k equa-
tion are small in practical cases. Also, empirical functions of turbulence Mach
number, M;, calibrated to reproduce compressibility effects in mixing layers, are
liable to have unwanted effects on boundary layers. From this we can deduce
two things. First, compressibility effects result from Mach-number dependence
of the main terms in the equations, i.e., those which are present even in incom-
pressible flow. Second, these effects appear mainly in the mixing layer, but are
not entirely attributable to the typically higher M; in mixing layers.

There is now fairly conclusive evidence, both from simulations [e.g., Vreman
et al. (1996)] and experiment [e.g., Clemens and Mungal (1995)], that quasi-two-
dimensional spanwise vortex rolls, which form the large-scale structure of low-
speed mixing layers, become more three-dimensional as Mach number increases.
This is in line with the Mach-number dependence of the most-unstable distur-
bances in laminar mixing layers, which are vortex rolls with gradually-increasing
sweepback. This “inflection-point” instability is essentially inviscid, capable of
growing in the presence of viscosity, and may therefore be at least qualitatively
relevant to the behavior of large structure in the presence of small-scale turbu-
lence.

It seems unlikely that laminar stability theory will lead directly to a quan-
titative correlation for turbulent flow, which must therefore rest on empiricism.
An important question not yet settled by experiment is whether the spreading
rate reaches an asymptotic value at high Mach number, or continues to decrease
indefinitely. Acoustic radiation from the turbulence, which in the past was oc-
casionally biamed entirely for the observed compressibility effects, will certainly
become an important mechanism of energy loss at very high Mach number and
may therefore prevent an asymptotic state from being reached.

The arguments above strongly suggest that compressibility effects manifest
themselves in the pressure-strain “redistribution” term, IL;;, defined in Equa-
tion (5.44) and a major term appearing in the Reynolds-stress transport equation
for 7;;, Equation (5.43). Unless some of the smaller unknown terms on the
right-hand side of Equation (5.43) increase very greatly with Mach number, the
empirical compressibility correction terms which are added to the turbulence
equations are a substitute for compressibility factors on II;;. To date, most
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compressibility corrections have been applied to the turbulence-energy equation,
as used in two-equation models. In these models, the 7;; equation is not treated
explicitly, and corrections to IL;; have not yet been explored.

5.5.1 The Sarkar/Zeman/Wilcox Compressibility Corrections

As noted in Subsection 5.4.4, focusing upon the k-e model, Sarkar et al. (1989)
and Zeman (1990) have devised particularly elegant models for the k equation that
correct the deficiency for the compressible mixing layer. Although their physical
arguments have since been shown to apply at best only to low-Reynolds-number,
strained homogeneous flows (the subjects of early DNS studies), their models
are nevertheless quite useful. Building upon the Sarkar/Zeman formulations, and
upon dimensional analysis, Wilcox (1992b) has postulated a similar model that
enjoys an important advantage for wall-bounded flows.

To implement the Sarkar or Zeman modification in the k-w model, we begin
by making the formal change of variables given by e, = 3*wk. This tells us that

dw p [des €s dk] (5.79)
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Consequently, a compressibility term must appear in the w equation as well as
in the k equation. Inspection of Equations (4.37) and (4.38) shows that the
Sarkar/Zeman compressibility modifications correspond to letting closure coef-
ficients 5 and 3* in the k-w model vary with M;. In terms of £* and the
compressibility function F'(M;), 8 and §* become:

pr =B 1+ &FM)], B=p8 -G F(M) (5.80)

where 37 = 9/100 and 3; = (3, fs are the corresponding incompressible values
of 5* and 8. The values of £* and F'(M;) for the three models are:

Sarkar’s Model®
£ =1, F(M)=M? (5.81)

Zeman’s Model

6* . 3/4, F(Mt) e [1 sy e*%("r‘-l—l)(M:—Mto)zng:I H(Mt _ Mto) (5.82)

Wilcox’s Model
=2  M,=1/4, F(M,)=[MZ—-MIHM, ~M,) (583)

2When Sarkar’s pressure-dilatation term, Equation (5.66), is used in combination with Equa-
tion (5.81), the coefficient £* should be reduced to 1/2.
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where +y is the specific-heat ratio and H(z) is the Heaviside step function.
Zeman recommends using A = 0.60 and M,, = 0.10,/2/(v+ 1) for free
shear flows. For boundary layers, their values must increase to A = 0.66 and
M;, = 0.254/2/(y+1). Zeman uses a different set of closure coefficients
for boundary layers because he postulates that they depend upon the kurtosis,
w™/(u?)?. The kurtosis is presumed to be different for free shear flows as
compared to boundary layers. While this may be true, it is not much help for
two-equation or stress-transport models since such models only compute double
correlations and make closure approximations for triple correlations. Quadruple
correlations such as u’4 are beyond the scope of these models.
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Figure 5.1: Computed and measured spreading rate for a compressible mixing
layer: —~ — Unmodified k-w model; —- Wilcox, £ = 2; - - - Sarkar, & = 13
- Zeman, £ = 3/4; o Measured [Barone et al. (2006)].

5.5.2 Applications

To 1llustrate how well these models perform, we consider mixing of a supersonic
stream and a quiescent fluid with constant total temperature. For simplicity, we
present results only for the k-w model as k-€ results are similar. The equations
of motion have been transformed to similarity form for the farfield and integrated
using Program MIXER (see Appendix C). Figure 5.1 compares computed and
measured [see Barone et al. (2006)] spreading rate, §’. As in the incompressible
case, spreading rate is defined as the difference between the values of y/z where
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(U — U3)2/(Uy — Ug)? is 9/10 and 1/10. The quantity &/ is incompressible
spreading rate and M, = (U; — Usz}/(a1 + a2) is convective Mach number
[Papamoschou and Roshko (1988)]. The unmodified k-w model fails to predict
a significant decrease in spreading rate as Mach number increases. By contrast,
the Sarkar, Zeman and Wilcox modifications, all applied to the k-w model, yield
close agreement between computed and measured spreading rates.

We turn now to the adiabatic-wall flat-plate boundary layer. The equations
of motion for the k-ww model have been solved with Program EDDYBL (see
Appendix C). Figure 5.2 compares the ratio of computed skin friction, cs, to
its incompressible-flow value, cs,, with a correlation of measured values for
freestream Mach number between 0 and 5. In all computations, momentum-
thickness Reynolds number is Reg = 10%. As shown, the unmodified model
virtually duplicates measured skin friction. By contrast, the Sarkar compress-
ibility modification yields a value for ¢y at Mach 5 that is 18% lower than the
value computed with £* = 0. Using the Wilcox compressibility correction with
&* = 2 and M,, = 0.25 yields virtually no difference in skin friction.
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Figure 52: Computed and measured k-w model skin friction for a compressible
flat-plate boundary layer: — Wilcox with & = 0 and £&& = 2; - - - Sarkar,
& = 1, .- Zeman, £ = 3/4; o Van Driest correlation.

Using A = 0.60 and M;, = 0.10,/2/(~ + 1) in Zeman’s model, computed
cy at Mach 5 1s 15% smaller than the value obtained with the unmodified model.

Increasing the values of A and M;_ to 0.66 and 0.25/2/(~y + 1), respectively,
eliminates this discrepancy. However, using this large a value for M, for the



5.5. MIXING-LAYER COMPRESSIBILITY CORRECTIONS 261

mixing layer results in larger-than-measured spreading rates, with differences in
excess of 100% between computed and measured spreading rate for M; > 2.5.

These results make it clear that neither the Sarkar nor the Zeman compress-
ibility term is completely satisfactory for both the mixing layer and boundary
layers. The Wilcox model was formulated to resolve this dilemma. Making g
and 8 functions of M, is a useful innovation, and is not the root cause of the
problem. Rather, the postulated form of the function F'(M,) is the weak link.

Inspection of turbulence Mach numbers in mixing layers and boundary layers
shows that all we need is an alternative to the Sarkar and Zeman functional
dependencies of e; upon M;. Table 5.1 shows why the Sarkar term improves
predictions for the mixing layer. The unmodified k-w model predicts peak values
of M, in a mixing layer that are more than twice the values in a boundary layer
for the same freestream Mach number. The Sarkar compressibility term reduces
(M})maz by about one third for the mixing layer when M., > 2. Even with this
much reduction, (M; )., for the mixing layer at a Mach number of 2 remains
higher than the largest value of (M;)a, in the boundary layer all the way up
to Mach 5.

Table 5.1: Maximum Turbulence Mach Number, (M})maz-

Boundary Layer Mixing Layer
Mo | =0 ¢*=1]¢=0 ¢=1
0 0 ¢ 0
0.088 0.087 0.239 0.215
0.157 0.151 0417 0.313
0.207 0.192 0.532 0.352
0.241 0.219 0.605 0.369
0.267 0.238 0.653 0.379

o bW~ O

For Mach 1, the Sarkar term reduces mixing-layer spreading rate below mea-
sured values (Figure 5.1). Zeman’s term predicts a somewhat larger spread-
ing rate at Mach 1, mainly because of the Mach number threshold in Zeman'’s
model. That is, Zeman postulates thai the compressibility effect is absent for
My < M;,. Zeman’s Mach number threshold also yields smaller differences
between computed and measured boundary-layer skin friction at lower Mach
numbers (see Figure 5.2). Inspection of Table 5.1 makes it very clear why set-
ting the threshold at M, = 0.25 leaves boundary-layer properties unaffected by
the dilatation-dissipation compressibility modification to the k-w model. These
observations show that an improved compressibility term can be devised by ex-
tending Zeman’s threshold Mach number to a larger value of AM;. The Wilcox
model simply combines the relative simplicity of Sarkar’s functional form for
F'(M,) with Zeman’s Mach number threshold to accomplish this end.
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5.6 Compressible Law of the Wall

In this section, we use perturbation methods to examine k-w and k-e model pre-
dicted, compressible log-layer structure. The results are particularly illuminating
and clearly demonstrate why the Sarkar and Zeman compressibility terms ad-
versely affect boundary-layer predictions. We will also show that the presence of
a cross-diffusion term in the w equation distorts a model’s implied compressibie
law of the wall.

5.6.1 Derivation

Recall from Section 4.6.1 that the log layer is the region sufficiently close to the
solid boundary for neglect of convective terms and far enough distant for molec-
ular diffusion terms to be dropped. As in the incompressible case, turbulence
kinetic energy production and dissipation are nearly balanced, which means the
stress limiter has no effect. Therefore, & = w so that u, = pk/w. Thus, the
log-layer form of the equations for the k-w model simplify to the following.

dit
iz = Puti? (5.84)
d cp’f 1_, wr |

pT&}; [PT‘T +§u +o F.,] = —Qu (5.85)
SN L3 IV - PP (5.86)

ol y ,{Lq-dy T 0y pwk = ;

d [ dw pdkdo _[(da\’ _

s |l PR Lap (22 - = 5.8
e e R R (&) —ser=0  cs
F_ﬂ% . ﬁu;’-ﬁu (5-88)

The quantity u. is friction velocity defined as /7, /pw Where 7, is surface
shear stress and p,, is density at the surface. Also, T,, is surface temperature,
¢.» is surface heat flux and ¢, is specific heat at constant pressure. Finally, y is
distance from the surface.

Since the flow is two dimensional, we have f; = 1. We introduce Sarkar’s
compressibility modification [Equation (5.81)], so that Equation (5.80) for 3*

and 3 simplifies to

Br=pr[1+ &M and fB=8,- B M} (5.89)
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Following Saffman and Wilcox (1974), we change independent variables
from y to u. Consequently, derivatives transform according to

d di d , d

#T@ = NT@d_ﬁ = ﬁwuq-ﬁ (5.90)
With this change of variables, we replace Equations (5.85) — (5.87) by
d |eT 1 ) | 0 Qu
70 [PrT <+ 5 +o k] = ol (5.91)
z dzk 6*ﬁ2k2
== il = o =0 (5.92)
2 dk =2
ay, plgsclyd , ur, OFRD (5.93)

4@ "k duda "k Rl
Integrating Equation (5.91) yields the temperature, and hence the density, as a
function of velocity and Mach number based on friction velocity, M, = u, /a,,.

T Pw 1/ @\ q U k
—_—=— =1 — V)P M2 | o — it — B
Tow P (’7 ) i Iiz (ur) * ﬁwu'?- (u‘r) to (ug)]

Next, we assume a solution of the form:

pk = Tpy,u? (5.95)

where I' is a constant to be determined. Substituting Equations (5.94) and (5.95)
into Equation (5.92), and noting that M? = 2T'M 2, leads to the following quartic
equation for I'.

B [14+26"M2T] [1+ (v — 1)Proo* M2 I? = 1 (5.96)

As can easily be verified, when M2 « 1 the asymptotic solution for T' is
1 £ + ('Y—gllPrTJ*

Br [ B

Finally, in terms of ', Equation (5.93) simplifies to
2 _
a% + %%g—z + [a— (B, — 26} €* M?T) T?] ﬁ;;r -
Combining Equations (5.94) and (5.95) yields the density as a function of velocity

and I'.
1_ D,%llPrTM’f [(&]’;)2 + 2‘@3 (%)]

Pl
14+ (y—1)Prro*T'M?2

I'=

]ME—F"' (5.97)

0 (5.98)

Puw
w _ (5.99
> )
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Equation (5.99) assumes a more compact form if we introduce the freestream
velocity, Us,. A bit more algebra yields

P 14 Bv — A%?
L P et ot (5.100)
o 1+ (y— 1)Pryo*I'M?
where
v = ifUyx
A2 = OV pr pM2 (T, /T) (5.101)
B = —PryguUs/(cpTuTy)

Using Equations (5.97), (5.100) and (5.101), and retaining terms up to O(M?2),
Equation (5.98) assumes the following form,
d*w o4 B-2A4% ldw T kZ(Us/ur)?
dv? ' o {1+ Bv— A%42] dv l1+BU—A202

] w=0 (5102

where the constant x,, is defined by

2= o [CHAPBBNE (0 DPrele fo/fi)e"

= o 20

iMf_Jr_...

(5.103)
and « 13 Karman’s conistant. Because U, /u, >> 1, we can use the WKB method
[see Kevorkian and Cole (1981) or Wilcox (1995a)] to solve Equation (5.102).
Noting that w decreases as % /U, increases, the asymptotic solution for w is

K

w~ Co [1 + Bv— A21,:2](1_20d/0)/4 exp [— Ko™ /uy] (5.104)

where C is a constant of integration and «* is defined by

W ! {s' -1 ( 24— B ) +sin~! ( ] )] (5.105)
= == 111 e S1 e—_— H
U A VB2 + 4A2 VB2 + 4A?

The sccond sin~! term is needed to ensure u* = 0 when v = 0. Combining
Equations (5.84), (5.95) and (5.104), we can relate velocity and distance, .

—(1-204/0 C
f[1 + By — A22] 02O et fur] dv ~ N‘}y (5.106)

o =]

We integrate by parts to generate the asymptotic expansion of the integral in
Equation (5.106) as Uy, /u; — oc. Hence,

(14204/0)/4 K Coy

[t + Bv — A%v?] exp [kou* fu,] ~ (5.107)

INu,
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Finally, we set the constant of integration Cp = T'u2 /(v ). Taking the natural
log of Equation (5.107), we conclude that

Y iy (Eﬂ) e, (5.108)

Ur Ky 7
The quantity C,, 1s the effective “constant” in the law of the wall defined by
1 =\ (14204/0)/4 1 =\ 3/8
Co=C+—in (—f’-) =C+—tn (_ﬁ) (5.109)
K Pw

where C' is a true constant and we use the fact that 04 = 1/8 and ¢ = 1/2.
Most of the analysis above holds for the k-¢ model. The only significant
difference is in the € equation which is as follows.

d de da\ 2 pe>
g 5| P ool R R o) (el [ e ,
o & ['quy] +CuCea1p du Cea A 0 (5.110)

Equations (5.95), (5.97) and (5.100) are still valid for the turbulence kinetic
energy and density, provided o* is replaced by o, *. The transformed equation

for € is 22 2y )
€ _‘[ H',E( oo/UT) :ltzo (5.111)

dv? 1+ By — A2¢2

where the constant k. is defined by

Pr.(3C. — Ce2) 0
20

-1
K’g = K32 — [(Ccl -+ 062)0.66* == (’7 ) Mf + ...

(5.112)
In arriving at Equation (5.112), recall from Equation (4.133) that the k-¢ model’s
closure coefficients are related by

k? = 8 JCu(Ohr—Cip)io. (5.113)
The asymptotic solution for € is
e~Ci[1+Bv— AQUQ}IM exp [—reu” fu,] (5.114)

where €' is a constant of integration. Velocity and distance from the surface are
related by

/ [1 + Bv — AQUQ} Sk exp [keu™ [ur] dv ~ Cry (5.115)

Consequently, Equation (5.107) is replaced by

[1+ Bv - A2fv2]5/4 exp [kew™ /ur] ~ Coy (5.116)
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where C5 is another constant of integration. Finally, the law of the wall for the
k-e model is

v L1, (”’y) +C. (5.117)
Ur  Re Vny
where C. is given by
1 5 5/4
Co=C+ —¥n (T) (5.118)
Ke Pw

Equations (5.108) and (5.117) are very similar to the compressible law of the
wall deduced by Van Driest (1951) [cf. Equation (5.4)]. There are two ways in
which these equations differ from the Van Driest law.

The first difference is the effective Karman constants, ., and ., which
vary with M, according to Equation (5.103) for the k-« model and according to
Equation (5.112) for the k-e model. In terms of each model’s closure coefficients,
ko and k. are given by (for vy = 1.4 and M, « 1):

k2 ~ K% [1— (41.33¢* + 1.03) M? + - -] (5.119)

and
K2~ k?[1—(23.926* +3.07) M2 + -] (5.120)

Table 5.2 summarizes results obtained in the boundary-layer computations of
Section 5.5 for the unmodified k-w model (£* = 0) and for the k-w model with
the Sarkar compressibility term (£* = 1). The value of «,, for the unmodified
model deviates from its implied Karman constant, x = 0.40, by less than 0.5%
for freestream Mach numbers between 0 and 5. By contrast, when £* = 1, the
deviation is as much as 4%. This large a deviation in the effective Kérman con-
stant is consistent with the observed differences between computed and measured
skin friction. Similarly, with M, = 0.05, k. differs from its implied « by 0.4%
and 3.4% for £* = 0 and 1, respectively. Thus the Sarkar compressibility term
has a somewhat smaller effect on x for the k-¢ model relative to the effect on <
for the k-w model.

Table 5.2: Effective Karman Constant for the k-w Model.

[ ﬂ’joo | ﬂf—,—[gtzo Mo ! MTI&'II 78] ’

0 0.400 0 0.400
0.032 0.399 0.031 0.392
0.048 0.399 0.046 0.382
0.052 0.398 0.049 0.379
0.050 0.398 0.046 0.382
0.048 0.399 0.043 0.384

Lh B i b — D
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To see why a small perturbation in x corresponds to a larger perturbation in
¢y, differentiate the law of the wall with respect to . Noting that ¢; = 1u2/U2,,
a little algebra shows that

dc f 2

T b = 121

e = mCr (5.121)
Thus, we should expect Acy/cy to be double the value of Ax/k. The numerical

results indicate somewhat larger differences in cy, but the trend is clear.
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Figure 5.3: Computed and measured velocity profiles for compressible flat-plate
boundary layers: — Wilcox (2006) k-w, - - - Chien k-¢; o Coles; o Watson.

The second difference between Equations (5.108) and (5.117) and the Van
Driest compressible law of the wall is in the effective variation of the “constants”
C,, and C. with (5/p,,). Because the exponent is only 3/8 for the k-w model,
the effect is minor. By contrast, the exponent is 5/4 for the k- model. This large
an exponent has a much stronger effect on predicted boundary-layer properties.
Figure 5.3 compares computed and measured [Fernholz and Finley (1981)] ve-
locity profiles for adiabatic-wall boundary layers at Mach numbers 4.5 and 10.3.
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Computed results are for the Wilcox (2006) k-w model and for Chien’s (1982)
low-Reynolds-number k-¢ model. Equations (5.108) and (5.117) are also shown
to underscore the importance of each model’s variable “constant” in the com-
pressible lJaw of the wall.

These results are consistent with the analysis of Huang, Bradshaw and Coak-
ley (1992), which shows how poorly the k-¢ model performs for compressible
boundary layers. Since g/p,, > 1 for all but strongly cooled walls, compressibil-
ity increases the model’s “constant” in the law of the wall with a corresponding
decrease in c¢y. The Sarkar and Zeman terms will thus amplify this inherent
deficiency of the k-e model.

5.6.2 The Effect of Cross Diffusion

Recall that the € equation is equivalent to the w equation with a cross-diffusion
coefficient 04 = 20 [see Equations (4.101) and (4.102)]. Thus, both the k-w
and k-¢ models predict that the constant in the compressible law of the wall is

1 5 (14+204/0)/4
C,=C+ —fn (_—) | (5.122)

Ky, Pw

which yields the exponent of 5/4 in Equation (5.118). Clearly, the presence of a
cross-diffusion term in the w equation increases the value of C,,.

To illustrate the impact of cross diffusion on compressible boundary-layer
predictions, Table 5.3 lists the exponent (1 + 204/0)/4 for several k-w models
and the k-¢ model. With no cross-diffusion term, the Wilcox (1988a) model has
the smallest exponent of the models listed, and thus the smallest deviation from
the compressible law of the wall. The newer Wilcox (2006) version increases
the exponent from 1/4 to 3/8, which proves to be of no great consequence. The
exponent is 3/4 for the model developed by Kok, which will cause nontrivial
distortion. Hellsten’s (2005) k-w model and the k-¢ model feature values of
1.193 and 5/4, respectively, which are totally unacceptable for Mach numbers in
excess of about 3.

Table 5.3: Exponent in the Compressible Law of the Wall “Constant”.

| Model | o0 | o | (0+204/0)/4 |
Wilcox (1988a) 0 0.500 0.250
Wilcox (2006) 0.125 | 0.500 0375
Kok (2000) 0.500 | 0.500 0.750
Hellsten (2005) 1.000 | 0.530 1.193
k-€ 1.538 0.769 1.250
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To put these results in proper perspective, don’t lose sight of the fact that
the k-e model requires the use of either wall functions or viscous damping func-
tions in order to calculate wall-bounded flows. If these functions have an effect
that persists well into the log layer — as they do for Chien’s model — it may
be possible to suppress the k-¢ model’s inherent flaws at low Reynolds num-
bers. However, the perturbation analysis above shows that such a model will
not be asymptotically consistent with the compressible law of the wall at high
Reynolds numbers. In effect, such a model would have compensating errors that
fortuitously yield reasonably close agreement with the law of the wall at low
Reynolds numbers.

Zhang et al. (1993) provide an example of such compensating errors with
their low-Reynolds-number k-¢ model that yields close agreement with constant-
pressure boundary layer data for Mach numbers up to 10. The model is based
on the work of Coleman and Mansour (1991), which shows that the exact Favre-
averaged equation for solenoidal dissipation, €, includes a term proportional to
the rate of change of the kinematic viscosity, 7, viz.,

s |
;08 _ pesdv 5% (2)=- (5.123)

Par = o at
This corresponds to an effective change of dependent variable in the ¢, equa-
tion. Assuming a power-law for viscosity, i.e., i oc T™, the effective rescaled
dependent variable would be 51*™¢,. Correspondingly, the exponent 5/4 in
Equation (5.118) would become (n + 1/4). For a typical value n = 7/10, the
new coefficient would be 0.95. Hence this term should yield only a slight im-
provement in the model’s distorted law of the wall. Through a series of closure
approximations, Zhang et al. combine this and other terms to arrive at a rescal-
ing that effectively leads to using p~%81¢,. This corresponds to replacing the
exponent 5/4 by -1.36, which would yield even more distortion.

As a final comment, had we used pe as the dependent variable in Equa-
tion (5.110) instead of ¢, the exponent 5/4 in Equation (5.118) would be reduced
to 1/4. This change would improve k-¢ model predictions for compressible
boundary layers. The effect of this rescaling on the mixing layer is unclear.

5.7 Compressible Boundary Layers

Most turbulence models are capable of providing reasonably accurate predictions
for constant-pressure, adiabatic-wall boundary layers provided the Mach number
does not exceed about 5. Similar to the incompressible situation, adverse pres-
sure gradients continue to be anathema to the k-e model, while presenting no
major problem for the k-w model. When surface heat transfer is present, model
predictions often show nontrivial discrepancies from measured values.
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Algebraic models such as the Cebeci-Smith and Baldwin-Lomax models (see¢
Subsections 3.4.1 and 3.4.2) require no special compressibility corrections. For
the sake of clarity, recall that the Cebeci-Smith model uses the velocity thickness,
o,,, defined in Equation (3.115) for both compressible and incompressible flow.
The velocity thickness differs from the displacement thickness, ¢*, which is
defined for compressible flows by

o [T(1_P2
) _/0 ( ﬁeﬁe) dy (5.124)

The primary reason algebraic models should fare well for compressible boundary
layers without special compressibility modifications is illustrated by Maise and
McDonald (1967). Using the best experimental data of the time for compressible
boundary layers, they inferred the mixing-length variation. Their analysis shows
that for Mach numbers up to 5:

o Velocity profiles for adiabatic walls correlate with the incompressible pro-
file when the Van Driest (1951) scaling is used, i.e.,

w11 % e _ V=V i 5
UOO—Abm (AUOO), A = 3 M (Tw/Ty) (5.125)

e The Van Driest scaling fails to correlate compressible velocity profiles
when surface heat transfer is present, especially for very cold surfaces.

e The classical mixing length is independent of Mach number.

Using singular-perturbation methods, Barnwell (1992) shows that algebraic
models are consistent with the Maise-McDonald observations. Many researchers
have applied the Cebeci-Smiith model to compressible boundary layers, showing
excellent agreement with measurements for adiabatic walls and somewhat larger
differences when surface heat transfer is present. The Baldwin-Lomax model
yields similar predictions.

Because the length scale employed in most older k-equation oriented one-
equation models is patterned after the mixing length, they should also be expected
to apply to compressible flows without ad hoc compressibility modifications.
This is indeed the case, especially for these and for newer models, which have
been designed for compressible-flow applications.

As we have seen in the last subsection, the issue is more complicated for
two-equation turbulence models. The log-layer solution indicates that the length
scale for the k-w and k-e¢ models varies linearly with distance from the surface,
independent of Mach number. The models even predict the Van Driest velocity
scaling. Thus, two-equation models are consistent with two of the most important
observations made by Maise and McDonald, at least in the log layer.
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However, we have also seen that the € equation includes a nonphysical den-
sity effect that distorts the model’s log-layer structure [see Equations (5.117)
and (5.118)], and precludes a satisfactory solution. By contrast, the w equa-
tion is entirely consistent with the Maise-McDonald observations. As shown in
Figures 5.2 and 5.3, the k-w model provides good quantitative agreement with
measurements for Mach numbers up to at least 10.
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Figure 5.4: Comparison of computed and measured skin friction and velocity
profile for a Mach 4, adiabatic-wall boundary layer with an adverse pressure
gradient: — Wilcox (2006) k-w model; - - - Chien k-e model; o Zwarts.

Turning to effects of pressure gradient, Figure 5.4 compares computed and
measured skin friction and velocity profiles a compressible boundary layer with
adverse pressure gradient, corresponding to a Mach 4, adiabatic-wall experiment
conducted by Zwarts [see Kline et al. (1981) — Flow 8411]. The figure includes
computed results for the Wilcox (2006) k-w model without viscous corrections
and for the Chien (1982) k-¢ model. Neither computation has been done with a
compressibility correction. As shown, k-w model skin friction is within 10% of
measured cy. Consistent with results shown in Figure 5.3(a), the k-e model’s skin
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friction is 8% lower than measured at the beginning of the computation where the
Mach number is 4. Because the flow is decelerating, the Mach number decreases
with distance, falling to 3 by the end of the run. As a result, g. /g, is only half
its upstream value, and the corresponding distortion of the k-e model’s log-layer
velocity profile is greatly reduced. Consequently, the k-¢ model’s velocity profile
is fortuitously in close agreement with the measured profile.
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Figure 5.5: Comparison of computed and measured flow properties for a Mach
2.65, heated-wall boundary layer with an adverse pressure gradient: —— Wilcox
(2006) k-w model; - - - Chien k-¢ model; o Fernando and Smits.

Figure 5.5 presents a similar comparison for a Mach 2.65 boundary layer
[Fernholz and Finley (1981)] with adverse pressure gradient and mild surface
heating. The ratio of wall temperature to the adiabatic-wall temperature, T, /Tgw,
varies between 1.07 and 1.13 for the flow. Again, because the Mach number is
in the low supersonic range, the density term in the k-e model’s law of the wall
is small. The value of x_*¢n(p/pw)°/* ranges between 0.50 at y* = 100 to
1.45 at 4y = 5000. By comparison, the distortion in the k-w model’s law of the
wall is less than a third of these values.



